CONSEILS A L'OFFICINE POUR PROMOUVOIR LE DIAGNOSTIC PRECOCE ET LA PREVENTION DU MELANOME

Directeur de thèse : Isabelle LAJOIE-MAZENC

JURY

Président : Bettina COUDERC
1er assesseur : Isabelle LAJOIE-MAZENC
2ème assesseur : Cendrine CABOU
3ème assesseur : Nadine SCHAUB
PERSONNEL ENSEIGNANT
de la Faculté des Sciences Pharmaceutiques de l’Université Paul Sabatier
au 1er octobre 2014

Professeurs Émérites

<table>
<thead>
<tr>
<th>Nom</th>
<th>Département</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. BASTIDE R</td>
<td>Pharmacie Clinique</td>
</tr>
<tr>
<td>M. BERNADOU J</td>
<td>Chimie Thérapeutique</td>
</tr>
<tr>
<td>M. CAMPISTRON G</td>
<td>Physiologie</td>
</tr>
<tr>
<td>M. CHAVANT L</td>
<td>Mycologie</td>
</tr>
<tr>
<td>Mme FOURASTÉ I</td>
<td>Pharmacognosie</td>
</tr>
<tr>
<td>M. MOULIS C</td>
<td>Pharmacognosie</td>
</tr>
<tr>
<td>M. ROUGE P</td>
<td>Biologie Cellulaire</td>
</tr>
</tbody>
</table>

Professeurs des Universités

Hospitalo-Universitaires

<table>
<thead>
<tr>
<th>Nom</th>
<th>Département</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. CHATELUT E</td>
<td>Pharmacologie</td>
</tr>
<tr>
<td>M. FAVRE G</td>
<td>Biochimie</td>
</tr>
<tr>
<td>M. HOUIN G</td>
<td>Pharmacologie</td>
</tr>
<tr>
<td>M. PARINI A</td>
<td>Physiologie</td>
</tr>
<tr>
<td>M. PASQUIER C (Doyen)</td>
<td>Bactériologie - Virologie</td>
</tr>
<tr>
<td>Mme ROQUES C</td>
<td>Bactériologie - Virologie</td>
</tr>
<tr>
<td>Mme ROUSSIN A</td>
<td>Pharmacologie</td>
</tr>
<tr>
<td>Mme SALLERIN B</td>
<td>Pharmacie Clinique</td>
</tr>
<tr>
<td>M. SIE P</td>
<td>HématoLOGIE</td>
</tr>
<tr>
<td>M. VALENTIN A</td>
<td>Parasitologie</td>
</tr>
</tbody>
</table>

Universitaires

<table>
<thead>
<tr>
<th>Nom</th>
<th>Département</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mme BARRE A</td>
<td>Biologie</td>
</tr>
<tr>
<td>Mme BAZIARD G</td>
<td>Chimie pharmaceutique</td>
</tr>
<tr>
<td>Mme BENDERBOUS S</td>
<td>Mathématiques – Biostat. Immunologie</td>
</tr>
<tr>
<td>M. BENOIST H</td>
<td>Chimie thérapeutique</td>
</tr>
<tr>
<td>Mme BERNARDES-GÉNISSON V</td>
<td>Biochimie</td>
</tr>
<tr>
<td>Mme COUDERC B</td>
<td>Physiologie</td>
</tr>
<tr>
<td>M. CUSSAC D (Vice-Doyen)</td>
<td>Biochimie</td>
</tr>
<tr>
<td>Mme DOISNEAU-SIXOU S</td>
<td>Pharmacognosie</td>
</tr>
<tr>
<td>M. FABRE N</td>
<td>Pharmacologie</td>
</tr>
<tr>
<td>M. GAIRIN J-E</td>
<td>Toxicologie – SémioLOGIE</td>
</tr>
<tr>
<td>Mme MULLER-STAUMONT C</td>
<td>Chimie analytique</td>
</tr>
<tr>
<td>Mme NEPVEU F</td>
<td>Toxicologie</td>
</tr>
<tr>
<td>M. SALLES B</td>
<td>Pharmacie galénique</td>
</tr>
<tr>
<td>Mme SAUTEREAU A-M</td>
<td>Biologie Cellulaire</td>
</tr>
<tr>
<td>M. SÉGUI B</td>
<td>Chimie analytique</td>
</tr>
<tr>
<td>M. SOUCHARD J-P</td>
<td>Droit Pharmaceutique</td>
</tr>
<tr>
<td>Mme TABOULET F</td>
<td>Chimie Thérapeutique</td>
</tr>
<tr>
<td>M. VERHAEGHE P</td>
<td></td>
</tr>
</tbody>
</table>
Maîtres de Conférences des Universités

Hospitalo-Universitaires

- M. CESTAC P
- Mme GANDIA-MAILLY P (*)
- Mme JUILLARD-CONDAT B
- M. PUISSET F
- Mme SÉRONIE-VIVIEN S
- Mme THOMAS F

Pharmacie Clinique
Pharmacologie
Droit Pharmaceutique
Pharmacie Clinique
Biochimie
Pharmacologie

Universitaires

- Mme ARÉLLANO C. (*)
- Mme AUTHIER H
- M. BERGÉ M. (*)
- Mme BON C
- M. BOUJILA J (*)
- Mme BOUTET E
- M. BROUILLET F
- Mme CABOU C
- Mme CAZALBOU S (*)
- Mme CHAPUY-REGAUD S
- Mme COSTE A (*)
- M. DELCOURT N
- Mme DERAEEVE C
- Mme ÉCHINARD-DOUIN V
- Mme EL GARAH F
- Mme EL HAGE S
- Mme FALLOTE F
- Mme GIROD-FULLANA S (*)
- Mme HALOVA-LAJOIE B
- Mme JUANGLAU E
- Mme LAJOIE-MAZENC I
- Mme LEFEVRE L
- Mme LE LAMIER A C
- M. LEMARIE A
- M. MARTI G
- Mme MIROYE G (*)
- Mme MONTFERRAN S
- M. OLICHON A
- M. PERE D
- Mme PHILIBERT C
- Mme PORTHE G
- Mme REYBIEUR-JUVATTOUX K (*)
- M. SAINTE-MARIE Y
- M. STIGLANTI J-L
- M. SUDOR J
- Mme TERRISSE A-D
- Mme TOURRETTE A
- Mme VANSTEELANDT M
- Mme WHITE-KONING M

Chimie Thérapeutique
Parasitologie
Bactériologie - Virologie
Biophysique
Chimie analytique
Toxicologie - Sémiologie
Pharmacie Galénique
Physiologie
Pharmacie Galénique
Bactériologie - Virologie
Parasitologie
Biochimie
Chimie Thérapeutique
Physiologie
Chimie Pharmaceutique
Chimie Pharmaceutique
Toxicologie
Pharmacie Galénique
Chimie Pharmaceutique
Pharmacologie
Biochimie
Physiologie
Pharmacognosie
Biochimie
Pharmacognosie
Toxicologie
Biochimie
Pharmacognosie
Toxicologie
Immunologie
Chimie Analytique
Physiologie
Chimie Pharmaceutique
Chimie Analytique
Hématologie
Pharmacie Galénique
Pharmacognosie
Mathématiques

(*) titulaire de l’habilitation à diriger des recherches (HDR)

Enseignants non titulaires

Assistants Hospitalo-Universitaires

- Mme COOL C (**)
- Mme FONTAN C
- Mme KELLER L
- M. PÈRES M. (**)
- Mme ROUCH L
- Mme ROUZAUD-LABORDE C

Physiologie
Biophysique
Biochimie
Immunologie
Pharmacie Clinique
Pharmacie Clinique

Attaché Temporaire d’Enseignement et de Recherche

- Mme PALOQUE L
- Mme GIRAVIDI C
- M IBRAHIM H

Parasitologie
Pharmacognosie
Chimie anal. - galénique

(**) Nomination au 1er novembre 2014
REMERCIEMENTS

A ma Présidente de thèse, Madame Bettina Couderc
Pour l'honneur que vous me faites de présider cette thèse, je vous remercie chaleureusement. Veuillez trouver ici l'expression de ma sincère reconnaissance.

A ma Directrice de thèse, Madame Isabelle Lajoie-Mazenc
Pour votre aide si précieuse, ainsi que pour vos conseils sans lesquels cette rédaction n'aurait pas été la même. Merci pour votre disponibilité et votre gentillesse. Ce fut un réel plaisir de travailler avec vous. Veuillez trouver ici l'expression de ma très vive reconnaissance et de mon respect le plus profond.

A mes juges,
Madame Cendrine Cabou,
Pour me faire l'honneur de bien vouloir juger ce travail.

Madame Nadine Schaub,
Pour avoir aimablement accepté de faire partie de ce jury. Je tiens encore à vous remercier pour cette expérience si enrichissante et pleine d'intérêt que vous et vos confrères m'avez fait vivre durant ces six mois de stage.

A ma famille,
Merci pour votre amour et votre soutien inconditionnel de chaque instant. Merci de toujours avoir cru en moi quand moi-même je n'y croyais plus. Merci de m'avoir donné le goût du travail. Merci pour avoir toujours été là et de m'avoir poussé à donner le meilleur de moi durant ces longues années. Ça y est j'y suis arrivé !

A mon compagnon,
Merci pour ton amour, ta gentillesse et ton soutien sans faille.

A mes amis
Merci pour tous ces merveilleux moments passés avec vous. Merci de toujours m'encourager dans mes choix et de toujours être là pour moi. Merci pour votre gentillesse.
TABLE DES MATIERES

REMERCIEMENTS ...4

RESUME ..5
ABSTRACT ...6

TABLE DES MATIERES..7

LISTE DES FIGURES..13
LISTE DES ANNEXES..16
LISTE DES ABBREVIATIONS...17

INTRODUCTION..18

Partie I : Le mélanome..20

I.1. Physiologie de la peau saine ...20
 I.1.1. L'épiderme...21
 I.1.1.1. Les kératinocytes ...22
 I.1.1.2. Les cellules de Langerhans ...24
 I.1.1.3. Les cellules de Merkel ...24
 I.1.1.4. Les mélanocytes ...25
 I.1.2. Le derme ..25
 I.1.2.1. La matrice extracellulaire ..26
 I.1.2.2. Les fibroblastes ...27
 I.1.2.3. Les fibres du derme ..27
 I.1.3. L'hypoderme ..29
 I.1.4. La mélanogenèse et les nævus ...29
 I.1.4.1. Les mélanocytes : cellules épidermiques ...29
 I.1.4.2. La mélanogenèse et les phototypes de la peau ...30
 I.1.4.3. La prolifération mélanocytaire bénigne : les nævus33
I.2. Physiopathologie du mélanome..34
 I.2.1. Histoire naturelle du mélanome...34
 I.2.2. Classification anatomo-clinique...35
 I.2.2.1. Les mélanomes avec phase d'extension horizontale..36
 I.2.2.2. Les mélanomes sans phase d'extension horizontale..38
 I.2.3. Facteurs de risque..39
 I.2.3.1. Les facteurs extrinsèques...39
 I.2.3.2. Les facteurs intrinsèques...40

I.3. L'impact du mélanome sur la santé publique..42
 I.3.1. Prévalence..43
 I.3.2. Incidence..43
 I.3.2.1. Une incidence qui ne cesse d'accroître..43
 I.3.2.2. Variations de l'incidence selon l'âge et le sexe..44
 I.3.2.3. Variations géographiques...45
 I.3.3. Mortalité..47

Partie II : Du diagnostic au traitement..49

II.1. L'examen clinique de la peau : le diagnostic de présomption..49
 II.1.1. L'examen clinique à l'œil nu..50
 II.1.1.1. Les circonstances de consultation...50
 II.1.1.2. La règle ABCDE..51
 II.1.1.3. La règle en 7 points de Glasgow..52
 II.1.2. L'examen par dermatoscopie..53
 II.1.2.1. L'appareil..53
 II.1.2.2. La démarche diagnostique devant une lésion pigmentaire..54
 II.1.2.3. Les performances diagnostiques de l'examen dermatoscopique..55
 II.1.3. Le résultat de l'examen de la peau...55

II.2. De l'examen anatomopathologique à la classification..56
 II.2.1. L'exérèse diagnostique : la biopsie-exérèse..56
 II.2.1.1. Principe et intérêt...56
II.2.1.2. La technique..57
II.2.2. L'examen anatomopathologique : diagnostic de certitude...........................58
 II.2.2.1. L'indice de Breslow...58
 II.2.2.2. Le niveau de Clark..59
 II.2.2.3. Les autres facteurs pronostiques..60
 II.2.2.4. Le compte rendu anatomopathologique..61
II.2.3. La détermination du stade..62
 II.2.3.1. La détermination TNM..62
 II.2.3.2. La stadification du mélanome..65
II.2.4. Le bilan d'extension...68
 II.2.4.1. L'examen clinique...68
 II.2.4.2. Les examens d'imagerie...69
 II.2.4.3. La technique du ganglion sentinelle...70
 II.2.4.4. La biologie..71
II.3. La prise en charge thérapeutique...71
 II.3.1. La chirurgie..71
 II.3.1.1. Excision de la tumeur primitive...71
 II.3.1.2. La biopsie du ganglion lymphatique sentinelle..72
 II.3.1.3. La curage ganglionnaire..73
 II.3.1.4. L'exérèse chirurgicale des métastases viscérales..73
 II.3.2. La chimiothérapie..73
 II.3.2.1. Absence de mutation du gène BRAF : dacarbazine..................................74
 II.3.2.2. Présence de mutation du gène BRAF : vémurafénib...............................75
 II.3.2.3. Mélanome métastatique disséminé : fotémustine.....................................76
 II.3.3. L'immunothérapie adjuvante..78
 II.3.3.1. L'interféron alpha...78
 II.3.3.2. L'interleukine-2..79
 II.3.3.3. L'ipilimumab..80
 II.3.4. La radiothérapie..82
Partie III : Promouvoir le diagnostic précoce pour lutter contre la mortalité du mélanome

III.1. Les étapes clés du diagnostic précoce
 III.1.1. L’intérêt du diagnostic précoce
 III.1.2. Les populations ciblées par le diagnostic précoce
 III.1.3. Le mode d’emploi du diagnostic précoce
 III.1.4. Les acteurs clés du diagnostic précoce

III.2. Les facteurs influençant l’efficacité de la stratégie diagnostique
 III.2.1. Les facteurs à prendre en considération
 III.2.2. Le délai diagnostique
 III.2.3. L’impact de l’offre sur la demande

III.3. Les moyens à mettre en œuvre pour améliorer le diagnostic précoce
 III.3.1. La formation des professionnels de santé
 III.3.2. L’incitation au diagnostique précoce
 III.3.3. Les réseaux mélanomes
 III.3.4. Le Plan Cancer III 2014-2019

Partie IV : La prévention du mélanome : la protection solaire
IV.1.3. Les actions néfastes des rayonnements ultraviolets sur notre peau

IV.1.3.1. Les effets immédiats

IV.1.3.2. Les effets retardés

IV.1.3.3. Les effets à long terme

IV.1.4. Le bronzage artificiel : une menace bien réelle mais évitable

IV.1.4.1. L'exposition aux ultraviolets artificiels en France

IV.1.4.2. L'impact sanitaire des cabines UV sur le mélanome

IV.1.4.3. Une réglementation inefficace pour protéger la santé des utilisateurs

IV.2. Les produits solaires : une photoprotection indispensable contre le mélanome

IV.2.1. Les dispositions juridiques relatives aux produits solaires en Europe

IV.2.1.1. La réglementation actuelle

IV.2.1.2. L'étiquetage des produits solaires

IV.2.2. La composition des produits solaires

IV.2.2.1. Les filtres

IV.2.2.2. Les écrans (ou filtres minéraux)

IV.2.2.3. Les additifs : les anti-oxydants

IV.2.2.4. Les excipients

IV.2.3. La formulation des produits solaires

IV.2.3.1. Les produits solaires liquides

IV.2.3.2. Les émulsions

IV.2.3.3. Les gels

IV.2.3.4. Les sticks solaires

IV.2.4. Précautions à prendre face aux produits solaires

IV.3. Conseils et règles d'exposition : le rôle du pharmacien

IV.3.1. Les conseils pour bien choisir son produit de protection solaire
IV.3.1.5. Les précautions en cas d'antécédents allergiques ou photoallergiques

IV.3.1.6. Les règles d'exposition

IV.3.1.7. Le capital solaire

IV.3.2. Les conseils pour bien utiliser son produit de protection solaire

IV.3.2.1. La quantité appliquée

IV.3.2.2. La régularité d’application

IV.3.2.3. La durée de vie des produits de protection solaire

IV.3.3. Les autres moyens de photoprotection

IV.3.3.1. La protection vestimentaire

IV.3.3.2. Les produits complémentaires

IV.4. L’éducation à l’exposition solaire

IV.4.1. L’indice universel de rayonnement UV solaire et la météo solaire

IV.4.1.1. L’indice universel de rayonnement UV solaire : un outil pédagogique

IV.4.1.2. Les messages de protection solaire ramenés à l’IUV

IV.4.2. Les actions de prévention

IV.4.2.1. La semaine de la protection solaire

IV.4.2.2. L’association Sécurité Solaire

IV.4.2.3. La campagne de prévention et de sensibilisation sur les risques solaires 2014 par Inpes

IV.4.2.4. Des actions de prévention à l’échelle européenne et internationale : le programme INTERSUN de l’OMS

CONCLUSION

BIBLIOGRAPHIE

ANNEXES
LISTE DES FIGURES

Figure 1 : Coupe de la peau (page 21)
Figure 2 : Les différentes cellules et couches cellulaires de l'épiderme (page 22)
Figure 3 : Cycle de vie d'un kératinocyte de la membrane basale à la couche cornée (page 24)
Figure 4 : Schéma du derme (page 25)
Figure 5 : Les fibres du derme (page 28)
Figure 6 : Unité épidermique de mélanisation (page 30)
Figure 7 : La mélanogenèse (page 31)
Figure 8 : Les différents phototypes de peau et les conseils de protection (page 32)
Figure 9 : Schéma de progression du mélanome selon le modèle de Clark (page 34)
Figure 10 : Les différents types de mélanomes (page 36)
Figure 11 : Évolution de l'incidence (taux standardisé monde estimé) du mélanome cutané de 1980 à 2012 en France selon le sexe (page 43)
Figure 12 : Incidence (taux standardisé monde) du mélanome cutané dans les régions françaises en 2005 (page 45)
Figure 13 : Évolution de la mortalité (taux standardisé monde) du mélanome cutané de 1980 à 2012 selon le sexe (page 47)
Figure 14 : La règle ABCDE (page 52)
Figure 15 : Illustration d'un dermatoscope sur lequel un appareil photo numérique a été vissé (page 54)
Figure 16 : Image d'un mélanome par dermatoscopie : une asymétrie flagrante et une pigmentation irrégulière sont observables sur cette image (page 54)
Figure 17 : La biopsie elliptique (page 57)
Figure 18 : Analyse de l'indice de Breslow (page 58)
Figure 19 : Pourcentages de décès par mois en fonction de l'indice de Breslow (page 59)
Figure 20 : Les niveaux d'invasion de Clark (page 60)
Figure 21 : Classification TNM des mélanomes selon l'AJCC (American joint committee on cancer – AJCC, 7e édition, valable dès 1.1.2010) (page 64)
Figure 22 : Classification par stade du mélanome cutané (American joint committee on cancer – AJCC, 7e édition, valable dès 1.1.2010) (page 65)
Figure 23 : Mélanome de stade 0 (page 66)
Figure 24 : Mélanome de stade I (page 66)
Figure 25 : Mélanome de stade II (page 67)
Figure 26 : Mélanome de stade III (page 67)
Figure 27 : Mélanome de stade IV (page 68)
Figure 28 : Le ganglion sentinelle (page 70)
Figure 29 : Marge de sécurité selon la SOR 2005 (page 72)
Figure 30 : Survie des patients en fonction du traitement par ipilimumab-dacarbazine ou par placebo dacarbazine (page 81)
Figure 31 : Densité pour 100 000 habitants des dermatologue-vénérologues en 2010 en France et DOM (page 93)
Figure 32 : Représentation schématique du spectre des radiations électromagnétiques du soleil (page 100)
Figure 33 : Pénétration du rayonnement solaire dans la peau en fonction de la longueur d'onde, chez un sujet blanc (page 101)
Figure 34 : Comparaison de la pigmentation constitutive entre peau claire et peau mate (page 103)
Figure 35 : Réactions phototoxique et photoallergique (page 107)
Figure 36 : Les effets des rayonnements UV et IR sur la peau (page 109)
Figure 37 : Publicité de l'Ambre Solaire (1936). (page 114)
Figure 38 : Les différentes catégories de produits solaires (page 117)
Figure 39 : Logo de protection UVA (page 118)
Figure 40 : Le mécanisme d'action des filtres chimiques (page 120)
Figure 41 : Les principaux filtres chimiques (page 121)
Figure 42 : Principaux filtres naturels et leurs caractéristiques (page 122)
Figure 43 : Classification selon les normes européennes des degrés de protection des lunettes de soleil (page 136)
Figure 44 : Un exemple de patch anti-UV (page 137)
Figure 45 : Sensibilité de la peau au soleil (page 129)
Figure 46 : Les conditions d'exposition (page 130)
Figure 47 : Choisir son produit de protection solaire (page 130)
Figure 48 : Logo période après ouverture (PAO) (page 134)
Figure 49 : Protection solaire recommandée sous forme de commandements (page 141)
Figure 50 : Guide ludique intitulé « 10 conseils pour profiter en toute sécurité du
soleil » (page 142)
Figure 51 : Le jeu du soleil (page 144)
Figure 52 : Les Incollables « Vivre avec le Soleil » (page 144)
Figure 53 : L'affiche de l'Inpes pour sa campagne de prévention de 2006 (page 145)
Figure 54 : Les cinq conseils de protection lors des campagnes estivales (page 145)
LISTE DES ANNEXES

Le mélanome cutané ..162
Mélanome cutané : identifier les personnes à risque et les lésions suspectes........164
Promouvoir le diagnostic précoce..165
Le suivi après le traitement...166
Recommandations de bon usage des produits de protection solaire..........................170
LISTE DES ABREVIATIONS

RCP : Réunion de Concertation Pluridisciplinaire
AJCC : American Joint Commitee on Cancer
UICC : Union for International Cancer Control
SOR : Standard Option Recommandation
PCR : Polymerase Chain Reaction
NFS : Numération Formule Sanguine
LDH : Lactate Déshydrogénase
LCR : Liquide Céphalo-Rachidien
OMS : Organisation Mondiale pour la Santé
SNDV : Syndicat national des dermatologues-vénéréologues
DREES : Direction de la Recherche, des Études, de l’Évaluation et des Statistiques
DGCCRF : Direction Générale de la Concurrence, de la Consommation et de la Répression des Fraudes
UV : Ultraviolet
InVS : Institut de Veille Sanitaire
CIRC : Centre International de Recherche sur le Cancer
OTC : Over The Counter
SPF : Sun Protection Factor
UPF : Ultraviolet Protection Factor
IUV : Indice Ultraviolet
Inpes : Institut National de Prévention et d’Éducation pour la Santé
MAP : Mitogen-Activated Protein
INTRODUCTION

La peau, organe le plus important en poids et en surface (5 Kg pour 2 m²) constitue le revêtement du corps humain. Émetteur, capteur, protecteur cet organe-peau siège de l'apparence a un véritable rôle social. C'est la première image que l'on donne de soi. Ainsi au début du XXème siècle Coco Chanel lance la mode du bronzage. La peau bronzée devient alors synonyme de beauté voire de richesse. Mais très vite, ce culte du soleil est décrié par les scientifiques. Ils sont tous unanimes : une exposition excessive au soleil augmente le risque de cancer cutané.

Il existe trois principaux cancers cutanés : les carcinomes développés aux dépens des cellules épidermiques, les mélanomes aux dépens des mélanocytes et les sarcomes cutanés aux dépens du tissu conjonctif. Le mélanome cutané est le cancer cutané le moins fréquent (1% des cancers cutanés) mais le plus grave. Il est diagnostiqué le plus souvent au stade de tumeur primitive. Il est alors traité avec un bon taux de réussite. Par contre, le mélanome métastase facilement et devient alors de mauvais pronostic. Même si des thérapies ciblées comme l'ipilimumab et le vémurafénib ont récemment obtenu une AMM. La prise en charge du mélanome métastasé reste malheureusement palliative. Ceci est d'autant plus préoccupant que l'incidence du mélanome a triplé en trente ans et qu'il apparaît de plus en plus précocement chez les jeunes enfants et les adolescents.

Les pharmaciens d'officine, en tant que professionnels de santé, ne peuvent plus se cantonner dans le curatif. Ils se doivent d'intégrer dans leur activité quotidienne la prévention et l'éducation du patient. D'autant plus qu'actuellement les comportements de santé sont à l'origine de nombreux problèmes de santé publique. Par exemple une exposition solaire excessive pendant l'enfance est à l'origine de mélanome. De plus le pharmacien est le premier recours pour les problèmes de santé courante notamment pour la délivrance de produit de protection solaire. C'est donc dans son officine que se joue le rôle de conseiller en santé du pharmacien. Pour se faire, il doit transmettre à son patient ses connaissances.

En tant que pharmacienne d'officine, j'ai voulu à travers cette thèse souligner l'importance vitale de se protéger des UV solaires et des UV artificiels pour se
prévenir du mélanome et la nécessité du diagnostic précoce pour inverser cette constante augmentation du taux de mortalité du mélanome. En tant que professionnels de santé nous nous devons de connaître la pathologie, les moyens pour le diagnostiquer et les armes pour le combattre. Ainsi la première partie de ce manuscrit est consacrée au mélanome. La seconde partie développe les étapes du diagnostic et la prise en charge thérapeutique associée selon le stade conclu par l'anatomopathologiste. La troisième partie est consacrée à la promotion du diagnostic précoce pour lutter contre la mortalité du mélanome. Puis la dernière partie rappelle le rôle essentiel du pharmacien dans la prévention solaire pour prévenir le mélanome. Professionnel de santé en première ligne pour les questions de protection solaire, il doit informer ses patients des méfaits du soleil et les conseiller au mieux sur leur protection solaire. Pour se faire, j'ai choisi de mettre en annexes des fiches synthétiques pratiques utilisables à l'officine pour aider le pharmacien au quotidien.
A l'heure actuelle, entre 2 et 3 millions de cancers cutanés non mélanocytaires et 132 000 mélanomes sont enregistrés chaque année dans le monde. D'après les Skin Cancer Foundation Statistics, un cancer diagnostiqué sur trois est un cancer de la peau et un américain sur cinq présentera un cancer cutané au cours de sa vie (1). Le mélanome est un problème de santé publique. En effet, il ne représente que 4% des cancers cutanés mais plus de 80% des décès par cancer de la peau.

I.1. Physiologie de la peau saine

La peau est un vaste tégument qui recouvre la totalité de notre corps. Selon le territoire cutané son épaisseur varie. La peau la plus fine, moins de 1 mm, est au niveau de la paupière tandis qu'elle est la plus épaisse sur la paume des mains et la plante des pieds : plus de 3 mm. Quelle que soit la région, la femme a la peau beaucoup plus fine que l'homme. Il faut savoir qu'avec le vieillissement l'épaisseur diminue de 6% tous les 10 ans.

La structure histologique de la peau lui permet de remplir de nombreuses fonctions. Elle protège du froid, de la chaleur, des agents extérieurs. Ce rôle de barrière entre le milieu extérieur et le milieu intérieur limite les déperditions en eau et la pénétration de substances étrangères dans l'organisme. La peau, par la production de vitamine D grâce aux kérratinocytes sous l'action des UVB, accomplit une fonction métabolique. L'organe peau permet aussi le maintien de manière stable de notre température interne par le biais de la transpiration : c'est la thermorégulation. L'organe de perception qu'est la peau via ses récepteurs sensoriels reçoit les informations du monde extérieur et ainsi ressenti des variations de température ou la douleur par exemple. Protecteur, producteur, thermorégulateur, capteur la peau a un rôle social non négligeable. Elle reflète notre état de santé.
Voilà pourquoi certaines maladies de peau valent à ceux qui en sont affectés d'être placés en marge de la société : les lépreux ou les syphilitiques par exemple.

L'épiderme et le derme vont former le tissu cutané ou la peau proprement dite. L'hypoderme constitué d'adipocytes ne fait pas partie de la peau : c'est le tissu sous cutané. Ces trois niveaux sont visibles dans la figure 1.

La peau se compose de l'extérieur vers l'intérieur de l'épiderme, du derme et de l'hypoderme.

I.1.1. L'épiderme

Tissu épithélial de revêtement constitué de cellules étroitement juxtaposées l'épiderme est la couche superficielle de la peau (cf figure 1). C'est un tissu pavimenteux : ses cellules sont plates et allongées, stratifié (il y a plusieurs couches de cellules) et orthokératosique (les cornéocytes qui sont les cellules de la couche superficielle n'ont pas de noyau). L'épiderme, comme tout épithélium, n'est pas vascularisé : les éléments nutritifs arrivent par le derme qui lui est vascularisé (3).

Tout comme l'épaisseur de la peau, l'épaisseur de l'épiderme est plus fine au niveau des paupières et plus épaisse au niveau de la plante des pieds. Elle est estimée en moyenne à 0,10 mm. Au sein de l'épiderme cinq couches cellulaires s'observent de l'intérieur vers l'extérieur (cf figure 2) :
Quatre principales populations de cellules composent notre épiderme : les kératinocytes, les cellules de Langerhans, les cellules de Merkel et les mélanocytes. (cf figure 2).

I.1.1.1. Les kératinocytes

Les kératinocytes représentent 80% de la population cellulaire de l'épiderme. Ils se présentent en quatre couches superposées marquant ainsi leur évolution morphologique autrement dit leur kératinisation de la profondeur à la surface.

La couche basale ou germinale, la plus profonde, se compose d'une seule couche de kératinocytes basaux disposés en alignement palissadique. Ces cellules se multiplient sans arrêt jusqu'à ce qu'elles commencent leur ascension vers la surface où elles vont cesser leur activité mitotique. En effet au cours de leur
Migration vers les couches superficielles, les kératinocytes produisent de la kératine, protéine qui s'accumule progressivement dans la cellule. Lors de son ascension le kératinocyte va s'allonger, s'aplatir et perdre son noyau pour devenir le cornéocyte dans la couche la plus superficielle : la couche cornée.

La couche épineuse ou de Malpighi, située au dessus de la couche basale, se compose de quatre à huit rangées de kératinocytes superposés hérisssés : les cellules épineuses (cf figure 2). Les kératinocytes sont ancrés les uns aux autres par les desmosomes (cf figure 3). Des groupements de tonofilaments (précurseurs de la kératine fibreuse) apparaissent dans cette couche épineuse pour former le cytosquelette du kératinocyte. L'ensemble de ce cytosquelette et des desmosomes confère la résistance mécanique à l'épiderme.

Au dessus de cette couche épineuse une couche composée de trois à quatre strates de kératinocytes enrichis en granulations apparaît : c'est la couche granuleuse (cf figure 2). C'est ensuite au tour de la couche la plus superficielle : la couche cornée d'apparaître. Elle se forme de plusieurs couches de cornéocytes autrement dit des kératinocytes chargés en kératine et dépourvus de noyau. Son épaisseur est maximale, cent couches de cornéocytes, au niveau de la plante des pieds. La couche cornée est elle-même divisée en trois zones qui marquent chaque degré d'évolution de la kératinisation. La couche claire juste au dessus de la couche granuleuse se retrouve que au niveau des paumes des mains et des plantes des pieds. La couche compacte apparaît au milieu puis la couche desquame en surface où la desquamation se fait. La desquamation correspond à la perte de cohésion entre les cornéocytes : les lamelles de kératine formant la couche cornée se détachent une à une.

Les kératinocytes mettent 28 jours pour se transformer en cornéocytes, autrement dit pour passer de la couche basale à la couche desquamante de la couche cornée (cf figure 3). L'épiderme met ainsi un mois pour se renouveler. Les UVB stimulent l'activité mitotique des cellules basales et favorisent donc la prolifération des kératinocytes.
Figure 3 : Cycle de vie d'un kératinocyte de la membrane basale à la couche cornée (5).

I.1.1.2. Les cellules de Langerhans

Les cellules de Langerhans, représentant 4% des cellules de l'épiderme, sont des cellules dendritiques présentatrices d'antigène de la peau. Retrouvées au niveau de la couche granuleuse et de la couche de Malpighi, elles captent les particules étrangères après avoir transmis aux lymphocytes T les caractéristiques de l'agresseur ayant franchi la barrière cutanée. Ces cellules de l'immunité forment une véritable barrière de défense (6).

I.1.1.3. Les cellules de Merkel

Les cellules de Merkel se localisent dans la couche basale entre les kératinocytes (cf figure 2). Associées à une terminaison nerveuse elles fonctionnent comme des mécanorécepteurs. C'est pour cela que de nombreuses cellules de Merkel se situent aux lèvres et aux doigts. Les cellules de Merkel ne représentent que 1% des cellules épidermiques (6).
I.1.1.4. Les mélanocytes

Les mélanocytes représentent 13% de la population cellulaire de l'épiderme. Ils se retrouvent dans la couche basale de l'épiderme (cf figure 2), dans le follicule pileux du derme, dans les muqueuses oropharyngées et génitales et dans l'iris. Le nombre de mélanocyte est défini à la naissance. Le paragraphe I.1.4. détaillera les mélanocytes et la mélanogenèse.

I.1.2. Le derme

La jonction dermo-épidermique encore appelée membrane basale lie l'épiderme au derme. Ceux sont les kératinocytes de la couche basale de l'épiderme et les fibroblastes du derme qui vont construire cette jonction dermo-épidermique (cf figures 1 et 2). Sa structure sinuuse s'aplatis avec l'âge : la peau se distend.
l'hydratation de la peau. Mesurant un à quatre mm le derme est dix à quarante fois plus épais que l'épiderme. Le derme se divise en deux parties : le derme papillaire en surface riche en fibroblastes où se trouve la vascularisation et le derme réticulaire ou profond riche en fibres (cf figure 4).

La vascularisation de la peau se retrouve au niveau du derme et de l'hypoderme. Le sang artériel arrive par les artères sous cutanées. Il va alimenter le plexus artériel profond du derme à la surface du derme et de l'hypoderme. À partir de ce plexus artériel profond des artères remontent vers le derme pour former le plexus artériel superficiel. De ce dernier partent les artérioles qui forment la microcirculation capillaire du derme. Le sang veineux descendent au plexus veineux superficiel puis au plexus veineux profond pour arriver au final dans les veines sous cutanées.

La peau est innervée par deux systèmes : le système nerveux somatique et le système nerveux végétatif. Le système nerveux somatique autrement dit le sens du toucher est un ensemble de nerfs dont partent les terminaisons nerveuses. Ces terminaisons sont libres, corpusculaires (enroulées sur elles-même) ou cellulaires. La cellule de Merkel est une terminaison nerveuse cellulaire retrouvée dans l'épiderme. Elle est sensible à la dépression de l'épiderme d'où sa fonction de mécanorécepteur. Le système nerveux végétatif est un ensemble de fibres motrices sympathiques qui sécrètent de l'acétylcholine. Il va ainsi contrôler la sécrétion de la sueur, la vasoconstriction cutanée et l'horrripilation du poil.

Cette vascularisation et cette innervation du derme lui fait jouer un rôle primordial dans la thermorégulation, dans l'élimination des déchets par la sueur.

I.1.2.1. La matrice extracellulaire

La matrice extracellulaire correspond au gel, synthétisé par les fibroblastes, qui entoure les cellules et les fibres. Il contient des macromolécules, des protéoglycanes, de l'eau et du sel pour former la substance fondamentale. Les protéoglycanes se constituent à 5% de protéines comme le collagène et l'élastine et à 95% de glycosaminoglycanes (GAGs) comme l'acide hyaluronique en autre. Ces
GAGs chargés négativement vont s'entourer de molécules d'eau et ainsi piéger l'eau dans le derme. Constitué d'eau à 80% le derme est le réservoir d'eau de la peau. Les protéoglycanes forment une gaine autour des fibres de collagène et ainsi évitent leur rapprochement (8).

I.1.2.2. Les fibroblastes

Outre les lymphocytes et les macrophages, les cellules du derme sont représentées essentiellement par les fibroblastes. Localisés principalement dans le derme papillaire les fibroblastes sécrètent collagène et élastine. Ils sont ainsi spécialisés dans la synthèse des fibres de collagène et d'élastine. Partie intégrante du tissu conjonctif les fibroblastes, cellules avec noyau, sont en contact les uns avec les autres soit par leurs prolongements soit grâce à la matrice extracellulaire qui les entourent (cf figure 5). Avec l'âge les fibroblastes voient leur nombre et leur activité de synthèse diminuer. Le nombre de macromolécule dans la matrice extracellulaire va ainsi diminuer : le tissu de soutien qu'est le derme sera moins dense et aura tendance à s'affaisser.

I.1.2.3. Les fibres du derme

La synthèse des fibres de collagène, d'élastine résulte de l'activité des fibroblastes.

- les fibres de collagène

Les fibres de collagène représentent 70% des fibres du derme. Elles vont y être de longueur et d'épaisseur différentes selon leur localisation. Dans le derme papillaire, tissu conjonctif lâche, les fibres y sont fines et orientées obliquement. Tandis que dans le derme réticulaire, tissu conjonctif dense, elles forment des faisceaux épais orientées horizontalement (cf figure 5). Les fibres de collagène confèrent au derme sa résistance aux tensions et aux tractions. Elles sont légèrement extensibles mais non élastiques. Régulièrement le stock de fibres de
collagène s'auto renouvelle grâce à un processus de production de nouvelles fibres et de destruction de fibres existantes. Les collagénases, enzymes synthétisées et sécrétées par les fibroblastes, vont détruire ces fibres de collagène. L'activité de ces enzymes de destruction augmente avec l'âge. Le derme masculin est plus riche en fibres de collagène donc plus résistant à l'expression des rides (9).

- les fibres d'élastine

Tout comme les fibres de collagène, les fibres d'élastine sont synthétisées par les fibroblastes et se différencient en fonction de leur localisation. Dans le derme papillaire les fibres sont verticales et fines alors qu'elles sont épaisses et horizontales dans le derme réticulaire (cf figure 5). Les fibres d'élastine, représentant 3% des fibres du derme, permettent à la peau de reprendre sa position d'origine quand elle est pincée ou étirée. L'élastine est une protéine très difficilement dégradable. Elle sera dégradée par les enzymes d'élastases, elles aussi sécrétées par les fibroblastes. La demi-vie de l'élastine est de 70 ans donc en conditions physiologiques le renouvellement de l'élastine est quasi nul. En effet, la production d'élastine s'arrête à la puberté et diminue progressivement. L'élastine est alors remplacée par du collagène inextensible. Exception faite lors de la cicatrisation où une réactivation de la synthèse d'élastine avec le néoderme apparaît (10).

Figure 5 : Les fibres du derme (11).
I.1.3. L'hypoderme

Compartiment le plus profond et le plus épais de la peau, l'hypoderme se compose d'un tissu adipeux formé d'adipocytes entouré d'un tissu conjonctif lâche vascularisé (cf figure 1). Tout comme l'épiderme et le derme, son épaisseur est variable selon la localisation : inexistant au niveau des paupières, plus épais aux talons et aux fesses. Il représente quinze à trente pour cent du poids total. Il est relié au derme par des fibres de collagène et d'élastine. Les adipocytes, principaux constituant de l'hypoderme, accumulent et stockent les graisses. Lors d'un effort intense la graisse contenue dans les adipocytes va se transformer en énergie. L'hypoderme joue ainsi un rôle de réserve énergétique. Il sert aussi d'isolant thermique et d'amortisseur mécanique. Ces trois rôles sont liés à la présence des adipocytes.

I.1.4. La mélanogenèse et les nævus

I.1.4.1. Les mélanocytes : cellules épidermiques

Précurseur du mélanocyte, le mélanoblaste colonise la couche basale de l'épiderme lors de la vie fœtale. La différenciation des mélanoblastes en mélanocytes se produit entre la 8e et la 14e semaine de la vie intra-utérine. À la naissance le bébé n'a pas de mélanocytes actifs donc aucun grain de beauté. Les mélanoblastes, cellules inactives, qui ne pigmentent pas la peau vont donner lors des futures expositions solaires les grains de beauté. Les mélanocytes sont des cellules dendritiques avec des prolongements cytoplasmiques. Grâce à ses derniers, un mélanocyte est en contact avec trente six kéatinocytes (cf figure 6). Les mélanocytes sont des cellules différenciées spécialisées dans la production de la mélanine. C'est un pigment brun qui colore la peau et qui est photoprotecteur : il absorbe 90% des UV et piège les radicaux libres. Ainsi un mélanocyte pigmente trente six kéatinocytes. L'ensemble forme une unité épidermique de mélanisation (cf figure 6). La mélanisation ou mélanogenèse est le processus biologique de fabrication et de distribution des mélanines dans l'épiderme pour pigmener la peau,
les poils et les yeux et pour assurer la photoprotection.

![Diagram of epidermal melanin unit (12).](image)

Figure 6 : Unité épidermique de mélanisation (12).

I.1.4.2. La mélanogenèse et les phototypes de la peau

La mélanogenèse comprend la synthèse de la mélanine par les mélanocytes et le transfert de cette mélanine vers les kératinocytes.

- **Synthèse des mélanines**

Dans les mélanocytes, la mélanine est synthétisée dans un organite intracellulaire délimité par une bicouche lipidique : le mélanosome. La synthèse de la mélanine se fait à partir de la tyrosine. Suite à deux réactions catalytiques, par des tyrosinases, la tyrosine se transforme en DOPAquinone. La tyrosinase a besoin d'oxygène et de cuivre pour catalyser les deux premières étapes de la synthèse de mélanine. À la fin de la mélanogenèse deux type de mélanine sont synthétisées : l'eumélanine et la phaeomélanine. L'eumélanine, pigment marron-noir pauvre en soufre, donne la couleur sombre à la peau. La phaeomélanine, pigment jaune-orangé riche en soufre par ajout de cystéine, donne la couleur claire à la peau (13, 14).
Transfert des mélanines vers les kératinocytes

Parallèlement à la synthèse des mélanines, les mélanosomes remplis de ces mélanines sont transportés vers l'extrémité des dendrites mélanocytaires. Puis le transfert de la mélanine aux kératinocytes se fait par les prolongements cytoplasmiques des mélanocytes (cf figures 6 et 7). Après avoir atteint l'extrémité des dendrites, les mélanosomes sont transférés aux kératinocytes. Puis les mélanosomes une fois transférés sont progressivement éliminés par les kératinocytes au fur et à mesure de leur ascension vers la surface de l'épiderme.

Figure 7 : La mélanogenèse (15).
Schéma de gauche : synthèse de la tyrosinase et formation du mélanosome dans le mélanocyte puis synthèse des mélanines dans le mélanosome puis transfert du mélanosome à un kératinocyte de l'unité épidermique de mélanisation.
Schéma de droite : synthèse des mélanines au sein du mélanosome grâce aux tyrosinases.

Les phototypes de la peau

Le phototype de la peau définit la sensibilité de celle-ci aux rayonnements ultraviolets. Toutes les personnes synthétisent la eumélanine et la phaéomélanine mais leur pourcentage est génétiquement déterminé. Par contre, le nombre de mélanocytes est sensiblement identique. Le sujet blanc, autrement dit les phototypes 1 à 4, synthétise principalement la phaeomélanine. Les mélanosomes qui
transportent la phaéomélanine sont activés suite à une exposition aux UV. Tandis que le sujet noir produit majoritairement de la eumélanine qui elle est produite en permanence avec ou sans soleil. La eumélanine est plus efficace et ainsi plus photoprotectrice que la phaéomélanine. Cette dernière génère des radicaux libres sous l'effet du soleil qui peuvent être impliqués dans le cancer de la peau et le vieillissement actinique (vieillissement lié au soleil). Ainsi plus la personne a la peau claire, les yeux clairs, les cheveux blonds ou roux, moins elle est pourvue en défenses naturelles face au soleil. Les personnes à phototype clair vont être les plus agressées par le soleil et donc doivent s'en protéger d'avantage (16,17).

Le professeur américain Fitzpatrick a proposé une classification des phototypes selon les critères suivants : la couleur de la peau et son aptitude à bronzer ou à attraper des coups de soleil, la couleur des cheveux, la couleur des yeux, la présence ou non d'éphélides.(cf figure 8)
I.1.4.3. La prolifération mélanocytaire bénigne : les nævus

Les nævus plus couramment appelés grains de beauté sont des hyperplasies mélanocytaires bénignes focalisées dans la peau. Dans la majorité des cas, les nævus sont acquis après la naissance. Il existe plusieurs sortes de nævus dont les trois majoritaires sont :

- **Les nævus communs ou banaux ou grains de beauté**

 Ceux sont des tumeurs ubiquitaires : tout le monde en présente en nombre variable. Rarement présents à la naissance, les nævus sont acquis et se développent vers trois ou quatre ans et à l'adolescence pour atteindre leur nombre maximal (environ quinze par personne) à l'âge adulte. Ils régressent au cours du vieillissement. Ils prennent différentes formes. Le lentigo est une petite tache lenticulaire bien limitée brune à noire. Le nævus saillant en dôme est plus foncé. Le nævus bleu est une lésion bleutée ressemblant à un tatouage. Les principaux facteurs de risque de nævus semblent communs à ceux du mélanome : phototype clair, influence génétique, exposition solaire dans l'enfance et immunodépression. Le risque de développer un mélanome est sept fois plus important pour les personnes ayant une centaine de nævus communs par rapport à une personne qui en a une quinzaine (19, 20).

- **Les nævus atypiques**

 Lésions de grande taille (>5mm) brune à rougeâtre, les bords sont irréguliers, la forme asymétrique et la pigmentation irrégulière. Ils apparaissent vers la puberté et restent dynamiques tout au long de l'âge adulte. Ils évoluent rarement en mélanome (21).

- **Les nævus congénitaux**

 Résultat d'une anomalie rare du processus d'embryogenèse, le nævus congénital est présent à la naissance et il persiste toute la vie durant. Parfois ils peuvent atteindre plusieurs centimètres allant jusqu'à couvrir, très rarement, une.
partie de la peau. Le plus souvent il s'agit de lésions en relief, pouvant être couvertes de poils, bicolores. Le principal problème de ces nævus congénitaux est leur potentiel de dégénérescence maligne (22).

I.2. Physiopathologie du mélanome

Les cancers de la peau, carcinomes et mélanomes, sont parmi les cancers les plus fréquents. Les carcinomes résultent de la transformation maligne des kératinocytes. 70% des carcinomes sont des carcinomes basocellulaires. Ils ne métastasent pas et leur ablation complète assure leur guérison. Par contre les carcinomes spinocellulaires et épidermoides sont plus rares (20% des carcinomes cutanés) mais plus agressifs puisqu'ils métastasent. Le mélanome est la forme la plus rare mais la plus agressive et la plus sévère des cancers cutanés. (23)

I.2.1. Histoire naturelle du mélanome

Le mélanome se développe au dépens des mélanocytes. La transformation néoplasique des mélanocytes résulte d'une accumulation d'anomalie touchant le génome de ces cellules, favorisée par le rayonnement ultraviolet. Le mélanome peut se développer soit de novo à partir d'une peau saine sans grain de beauté préexistant (70 à 80% des cas) soit à partir de la transformation maligne d'un nævus. Le mélanome progresse généralement en 3 stades décrits par le modèle de Clark. (cf figure 9)

![Figure 9 : Schéma de progression du mélanome selon le modèle de Clark (24).](image)
Au premier stade, les cellules tumorales prolifèrent de manière anarchique. Elles envahissent l'épiderme mais ne franchissent pas la couche basale qui sépare le derme de l'épiderme. Le mélanome reste dans l'épiderme : il est non invasif in-situ (cf figure 9). Il est appelé mélanome à extension radiale ou RGP pour Radial-Growth Phase. Il peut s'étendre que de manière latérale au sein de l'épiderme : c'est la phase horizontale. Elle peut durer de 1 à 15 ans. L'exérèse du mélanome à ce stade assure la guérison complète et évite ainsi tout risque de métastase. (25)

Si le mélanome n'est pas pris en charge au stade précédent, les细胞ules de mélanome devenues plus agressives vont envahir les tissus sous-jacents. Elles sont capables de passer de l'épiderme au derme et de le coloniser (cf figure 9). C'est la croissance verticale du mélanome à haut risque métastatique. Le mélanome est alors à extension verticale ou VGP pour Vertical-Growth Phase. La tumeur devenue plus agressive acquiert alors le pouvoir de se disséminer et ainsi de former des métastases. Pour évaluer le pronostic à ce stade du développement tumoral la détection de ganglions sentinelles est possible (cf paragraphe II.2.4.3).

Au stade de mélanome métastatique, les cellules tumorales induisent la formation de nouveaux vaisseaux sanguins qui irriguent la tumeur pour lui apporter l'oxygène et les nutriments indispensables à sa croissance. Puis par voie hématogène et/ou lymphatique la tumeur s'implante et envahit les tissus sains environnants à distance de la tumeur initiale pour donner les métastases. Dans un premier temps, le patient présente des métastases loco-régionales cutanées puis des métastases à distance cutanées ou viscérales. Ainsi les organes touchés par ordre de fréquence décroissant sont : les poumons, le foie, le cerveau, les os. Ces métastases viscérales ne sont pas nécessairement précédées de métastases loco-régionales. (26)

1.2.2. Classification anatomo-clinique

La classification des mélanomes peut se faire selon le profil évolutif de la lésion. Il existe six types de mélanomes (cf figure 10). Cette classification anatomo-clinique pourrait évoluer grâce aux progrès réalisés en génétique. De plus en plus de
gènes, dont les mutations sont impliquées dans l'apparition des mélanomes, sont découverts. Par exemple, la mutation du gène c-kit est fréquemment retrouvée dans le mélanome acral-lentigineux et le mélanome nodulaire. La mutation du gène BRAF est observée dans le mélanome à extension superficielle et le mélanome nodulaire.

Figure 10 : Les différents types de mélanomes. (23)

I.2.2.1. Les mélanomes avec phase d'extension horizontale : composante intra épidermique latérale

- Mélanome à extension superficielle (SSM pour Superficial Spreading Melanoma)

Le mélanome à extension superficielle représente 70 à 80% des cas de mélanome : c'est la forme de mélanome la plus fréquente. Il est lié à des coups de soleil importants dans le passé ou des expositions intermittentes. La tumeur prend l'aspect d'une tâche de contour irrégulier polycyclique, de couleur inhomogène polychrome (cf figure 10). Il a d'abord une croissance intra-épidermique horizontale très longue où la tumeur sera non palpable puis une croissance verticale où apparaît un nodule palpable. Il se localise le plus fréquemment sur le cou et la partie supérieure chez l'homme. Chez la femme, il se développe sur la partie inférieure des jambes. (27, 28)
- **Mélanome de Dubreuilh ou Lentigo malin (LMM pour Lentigo Malignant Melanoma)**

Le mélanome de Dubreuilh est une forme de mélanome spécifique des personnes âgées : l'âge moyen de diagnostic se situe aux environs de 65 ans. Il apparaît sur les zones exposées au soleil de façon chronique telles que la tête et le cou. Il s'agit d'une des formes les plus rares puisqu'elle représente que 5% des mélanomes. Le mélanome de Dubreuilh fait suite à une mélanose de Dubreuilh ou aussi appelé mélanome in-situ, qui est l'état pré-cancéreux. C'est une lésion pigmentée, inhomogène brune-noire et de croissance lente sur la peau photo-exposée (cf figure 10). La phase horizontale dure de 10 à 20 ans. Il évolue rarement en mélanome invasif avec des nodules ou des ulcerations. Par contre si le mélanome franchit le derme, son pronostic et son potentiel métastatique deviennent similaires aux autres mélanomes. (29, 30)

- **Mélanome acral lentigineux ou mélanome des extrémités (ALM pour Acral Lentiginous Melanoma)**

Il se manifeste le plus souvent chez les personnes qui ont la peau foncée (phototypes IV, V ou VI). En effet il représente 60% des mélanomes chez les populations Noires et Asiatiques. Chez la population Caucasiennne il représente que 5% des mélanomes cutanés. Il n'est pas lié à une surexposition aux UV. Donc il se développe sur des zones absolument pas exposées au soleil telles que la plante des pieds, la paume des mains ou sous les ongles. Le mélanome plantaire apparaît au niveau des zones d'appui et de frottement : talon et têtes métatarses. Au début c'est une lésion plane, à bordure irrégulière, de pigmentation variable et de croissance lente. Puis un nodule pigmenté ou achronome apparaît. Il peut se confondre avec un ulcère diabétique ou vasculaire. Le mélanome sous-unguéal débute par une bande pigmentée irrégulière du lit unguéal qui s'étendra ensuite (cf figure 10). Il peut être confondu avec une mycose ou un hématome sous-unguéal. Son diagnostic est souvent tardif : au bout de 2 ans d'évolution la tumeur est ulcéée. (28, 30)
– **Mélanome des muqueuses** (en anglais mucosal melanoma)

Sa fréquence est faible puisqu'il représente que 5% des mélanomes. Même si ils peuvent toucher l'ensemble des muqueuses, la vulve et les muqueuses ORL (naso-pharynx et sinus) constituent leur localisations de prédilection. Leur diagnostic tardif s'explique par leur caractère achromique dans 20% des cas. Celui-ci est aggravé par un pronostic péjoratif puisque l'atteinte ganglionnaire est fréquente et précoce. (31)

– **Mélanome uvéal** (en anglais uveal melanoma)

C'est le cancer de l'œil le plus fréquent : 500 cas par an en France. Comme son nom l'indique le mélanome uvéal concerne l'uvée : couche supérieure qui recouvre la rétine et le corps vitré. La tumeur peut toucher la choroïde, le corps ciliaire ou l'iris. Le mélanome choroïdien est le plus fréquent. Dans 50% des cas, il métastase dans le foie. (32)

I.2.2.2. Les mélanomes sans phase d'extension horizontale

– **Mélanome nodulaire** (NM pour Nodular Melanoma)

Il représente 15 à 30% des mélanomes de la peau. Contrairement aux autres mélanomes qui commencent leur développement par une phase de croissance horizontale le mélanome nodulaire a une phase de croissance rapide et d'emblée verticale. Cette phase verticale a lieu en quelques semaines et donne une lésion rapidement palpable sous forme de nodule épais de couleur noire ou achromique (cf figure 10). Ce nodule peut s'ulcérer, saigner ou se recouvrir d'une croûte. Le mélanome nodulaire peut atteindre toutes les zones y compris celles non photo-exposées. (33)
I.2.3. Facteurs de risque

Les principaux facteurs de risque du mélanome sont depuis longtemps clairement identifiés. D'un côté les facteurs extrinsèques c'est-à-dire environnementaux avec l'exposition excessive au soleil. De l'autre côté les facteurs intrinsèques liés au patrimoine génétique de chacun. Comme n'importe quel cancer le mélanome est une maladie multifactorielle. Il est le résultat de différentes causes qui interagissent entre elles. Par exemple, l'Australie est le pays le plus touché par le mélanome. Ceci s'explique par plusieurs facteurs : la localisation géographique avec des faibles latitudes, une couche d'ozone diminuée donc des UV passants davantage et le phototype clair de la population.

I.2.3.1. Les facteurs extrinsèques

Toutes les études arrivent à la conclusion que l'exposition aux rayonnements UV est le facteur majeur dans le développement du mélanome. En effet, deux tiers des mélanomes sont dus à une exposition excessive au soleil. Ce risque augmente chez les personnes à peau claires. L'IARC (International Agency for Research on Cancer) a classé tous les rayonnements ultraviolets et les appareils de bronzage comme carcinogènes de classe I (carcinogène certain) pour l'Homme.

- L'exposition aux UV naturels

Selon le Centre International de Recherche sur le Cancer 70% des mélanomes cutanés seraient dus à l'exposition solaire. Les expositions intenses et intermittentes au soleil sont celles qui confèrent les risques les plus élevés de mélanome par comparaison avec les expositions continues d'autant plus si les expositions ont eu lieu pendant l'enfance et l'adolescence. Une personne qui a eu de nombreux coups de soleil notamment avant 15 ans voit son risque de développer un mélanome multiplié par 2. Jusqu'à la puberté, la peau ne peut pas se défendre contre les agressions des rayonnements UV : la peau est trop fine et le système pigmentaire reste immature. Ainsi la peau est davantage vulnérable aux effets cancérogènes des rayonnements UV. (34, 35, 36)
– **L'exposition aux UV artificiels**

Le CIRC a publié en 2006 une méta-analyse portant sur des études cas-témoins conduites en Europe, en Amérique et en Australie. Elle a mis en évidence une association entre mélanome et « avoir été exposé au moins une fois dans sa vie à un appareil émettant des UV artificiels ». La méta-analyse montre une augmentation de risque de mélanome allant jusqu’à 75% si l'exposition a lieu avant 35 ans. De plus il a été aussi montré que les doses reçues par les appareils de bronzage UV se cumulent à celles des expositions aux UV naturels. En France les cabines à UV seraient responsables de 100 à 350 nouveaux cas de mélanomes par an. Compte tenu de ces résultats, le CIRC, en juillet 2009 a ajouté dans la liste des agents cancérigènes pour l’homme les UV émis par les lampes de bronzage artificiel. (35)

– **Le type d'exposition**

Les effets destructeurs du rayonnement UV s'accumulent au fil des expositions. Le risque de cancer de la peau augmente en fonction de la durée d'exposition et de l'intensité du rayonnement. L'intensité du rayonnement dépend de la saison, du moment de la journée, de la latitude, de l'altitude, de la surface de réflexion, de la présence de nuages.

Le mélanome de Dubreuilh fait suite à des expositions solaires chroniques. Au contraire, le mélanome nodulaire et le mélanome à extension superficielle seraient dus à des expositions intenses et donc plutôt à des coups de soleil pendant l'enfance. (37)

I.2.3.2. Les facteurs intrinsèques

Certaines personnes sont plus sujettes aux mélanomes. Pour les identifier il faut analyser les facteurs de risque individuels ou génétiques.
– **Le phototype cutané**

Le phototype définit la sensibilité de la peau aux rayonnements UV. Il est lié à la production de mélanine par les mélanocytes. C'est un facteur de risque majeur de mélanome. Plus la peau est claire et à tendance rousse, c'est-à-dire le phototype I, plus le risque est élevé. Un sujet à peau noire (phototype VI) aura un risque 10 fois moins élevé de développer un mélanome qu'un sujet Caucasiens. Comme expliqué précédemment, les sujets à peau noire produisent plus de phaéomélanine qui va les protéger contre les UV en renvoyant la lumière. Mais ils développeront plutôt des mélanomes non photo-induits : les mélanomes des muqueuses et acro-lentigineux. (38)

– **La présence de grains de beauté (nævus)**

La présence d'une cinquantaine de nævi ou plus mesurant plus de 2 mm multiplie par 4 ou 5 le risque de mélanome. La présence de nævi atypiques (diamètre de plus de 6 mm, polychrome, polymorphe) augmente aussi le risque de cancer. Ce risque augmente d'avantage si le nombre de nævi atypique est supérieur ou égal à 2. Un patient ayant au moins 5 nævi atypiques voit son risque multiplié par 10. Les nævi congénitaux ont un risque de transformation en mélanome qui augmente avec leur taille. Ceux de plus de 20 cm sont très souvent retirés car leur risque est accru. (39)

– **L’existence d’un précédent mélanome**

L'étude rétrospective de DiFronzo et al. comprenant 3310 patients, a comptabilisé 114 patients présentant un second mélanome c'est-à-dire 3,4%. 60% de ces mélanomes se développèrent dans les 12 mois.

– **Les antécédents familiaux**

Quand un parent au premier degré (parents, frères, sœurs) a été atteint d'un mélanome le risque d'en développer un est multiplié par 2. 5 à 10% des mélanomes sont d'origine familiale. Lors d'un diagnostic dans une famille une surveillance accrue
des membres de cette famille est nécessaire. Une consultation d'onco-génétique permet de chercher les déterminants de cette prédisposition génétique. Plusieurs gènes prédisposants à un risque élevé ont été identifiés et retrouvés mutés dans les familles à risque : CDKN2A (gène suppresseur de tumeur), CDK4 (proto-oncogène), BAP1 (gène suppresseur de tumeur). Un consentement éclairé explicitant clairement les objectifs et les modalités de l'examen est signé obligatoirement par le patient. (40, 41)

- **L’immunodépression**

Un patient ayant subit un traitement immunosuppresseur suite à une transplantation d’organe ou ayant présenté une hémopathie maligne (leucémie ou lymphome) aura un risque augmenté de développer un mélanome. Ces patients ont une surveillance accrue dermatologique d’autant plus s’ils présentent un nombre important de nævi.

- **Le Xeroderma Pigmentosum ou les Enfants de la Lune**

Les patients atteints de cette maladie héréditaire sont extrêmement sensibles aux rayons ultraviolets. Les cellules sont incapables de réparer les dommages sur l’ADN causées par le rayonnement UV. Ainsi ils ont un risque élevé de développer un cancer cutané (mélanome et carcinome).

I.3. L’impact du mélanome sur la santé publique

En France, comme dans les autres pays occidentaux, le mélanome cutané apparaît comme un réel problème de santé publique de par sa fréquence, de par l’augmentation de son incidence au cours des trente dernières années et de par sa mortalité en cas de diagnostic tardif. Pour mesurer l’impact du mélanome sur la santé publique, les taux de prévalence, d’incidence, de mortalité, de survie et le coût pour la société sont observés. (42)
I.3.1. Prévalence

La prévalence est le nombre de personne atteinte par une maladie dans une population à un moment donné. Elle comptabilise à la fois les nouveaux cas et ceux diagnostiqués plus anciennement. Peu d'études épidémiologiques françaises ont estimé la prévalence du mélanome. L'IARC a estimé en 2012 la prévalence du mélanome cutané tout sexe confondu à 8601 personnes. (43)

I.3.2. Incidence

L'incidence d'une pathologie est une mesure du risque pour un individu de contracter cette pathologie pendant une période donnée. Le taux d'incidence est le nombre de nouveaux cas observés dans une population donnée, divisé par la taille de cette population et la durée de la période d'observation.

En 2012, 11 176 nouveaux cas ont été rapportés dont 5 747 nouveaux cas chez la femme et 5 429 nouveaux cas chez l'homme (48%). Le mélanome représente 3,1% de l'ensemble des nouveaux cas de cancers rapportés en 2012 ce qui en fait le 9ème cancer tout sexe confondu. (44)

I.3.2.1 Une incidence qui ne cesse d'accroître

![Figure 11 : Évolution de l'incidence (taux standardisé monde estimé du mélanome cutané de 1980 à 2012 en France selon le sexe. (44)](image)
Chez l'homme (courbe violette) et la femme (courbe bleue), l'incidence du mélanome cutané est en forte augmentation depuis 1980 avec toutefois un petit ralentissement de cette croissance après 2005.

Chez l'homme comme chez la femme, le taux d'incidence du mélanome cutané dans la population mondiale a augmenté de manière notable entre 1980 et 2012 (cf figure 11). Il est passé de 2,5 à 10,8 pour 100 000 hommes et de 4,0 à 11,0 pour 100 000 femmes. En trente ans, l'incidence a été multiplié par 4 chez l'homme et par 2,6 chez la femme. Le taux annuel moyen d'évolution de l'incidence est de +3,4% chez la femme et +4,7% chez l'homme. Toutefois l'augmentation d'incidence observée depuis 1980 s’est ralentie chez l'homme et la femme depuis 2000 et une stabilisation s'observe.

I.3.2.2. Variation de l'incidence selon l'âge et le sexe

En France, le mélanome constituait en 2012 le 6ème cancer féminin, soit une incidence de 3,7% et le 9ème cancer masculin, soit une incidence de 2,7%. Cette prédominance féminine existait déjà mais en 2000 le mélanome représentait seulement le 9ème cancer féminin et le 13ème cancer masculin. Quelque soit le sexe, l'augmentation de l'incidence du mélanome est indéniable. Le mélanome est un des rares cancers dont le taux d'incidence est plus élevé chez la femme. (45, 46)

En Europe, cette incidence plus forte chez la femme que chez l'homme est aussi observée. Par contre en Australie, l'incidence chez la femme ne s'accroît plus mais par contre l'incidence chez l'homme continue d'augmenter. Ceci pourrait s'expliquer par le fait que les nombreuses campagnes publicitaires effectuées en Australie depuis 40 ans ont plus d'impact sur les femmes. (47)

I.3.2.3 Variations géographiques

Figure 12 : Incidence (taux standardisé monde) du mélanome cutané dans les régions françaises en 2005. (49)

Les régions avec un taux standardisé monde TSM élevé sont en rouge foncé pour les hommes et en vert foncé pour les femmes. Les différences spatiales sont peu prononcées.

En France, les régions présentant les plus forts taux d'incidence chez les hommes, supérieur à 8,2 nouveaux cas pour 100 000 habitants, sont l’Alsace, la Bretagne, le Pays de la Loire, la Basse-Normandie et la Corse. A l'opposé, c'est dans le Nord-Pas-de-Calais que le taux est le plus faible. Chez les femmes, le taux est particulièrement élevé en Bretagne puis en Limousin et en Normandie. C'est la Champagne-Ardenne qui représente le taux le plus faible (cf figure 12). Toutes les régions ont connu une augmentation de l'ordre de 200% entre 1980 et 2000, dépassant +250% en Aquitaine, Bourgogne et Limousin. (51)

Au niveau mondial, c'est en Australie et en Nouvelle-Zélande, chez les sujets de type caucasien, que le facteur de risque est plus élevé : 39,8/100 000 chez les
hommes et 32,3/100 000 chez les femmes. A l'inverse c'est en Asie et en Afrique, où les phototypes sont plus foncés, que l'incidence est la plus faible. (51)

La comparaison entre les données européennes et mondiales met en lumière des différences significatives concernant l'incidence du mélanome et le risque de décès. Les habitants des régions méditerranéennes, autrement dit population majoritairement de phototype foncé, présentent la plus faible incidence de mélanome. En effet c'est en Bulgarie et en Grèce que l'incidence est la plus faible. Par exemple en Grèce, 2,8 nouveaux cas de mélanomes pour 100 000 chez les hommes et 3,9 nouveaux cas pour 100 000 chez les femmes. Chez l'homme, l'incidence européenne est la plus élevée en Norvège (16,1/100 000) et en Suisse (15,3/100 000). Chez les femmes, c'est le Danemark (16,9/100 000) et la Norvège (15,7/100 000) qui détiennent le triste record. (51)

De grandes disparités d'incidence en fonction de la latitude géographique et des caractéristiques ethniques des populations sont observées. Le rapport incidence-mortalité reste double en Europe de l'Ouest par rapport à l'Europe de l'Est. Cette différence serait liée au fait que le diagnostic soit trop tardif à l'Est. En effet les premières campagnes de prévention ont démarrés il y a moins de 10 ans. (52, 53, 54)

Un gradient Nord-Sud décroissant en Europe, lié aux différents phototypes cutanés et aux prédispositions génétiques des populations, est observé. De ce fait les mélanomes cutanés sont sept à quinze fois moins fréquents chez les populations noires que chez les populations caucasiennes vivant au même endroit. Cette variation en fonction de la latitude et du phototype ethnique est aussi observable à l'échelle mondiale. Ainsi les incidences les plus élevées sont observées sous les latitudes australes, autrement dit en Australie, chez les phototypes clairs. (55, 56, 57)
I.3.3 Mortalité

Figure 13 : Évolution de la mortalité (taux standardisé monde) du mélanome cutané de 1980 à 2012 selon le sexe. (44)

La courbe violette représente l'évolution de la mortalité chez l'homme et la courbe bleue celle chez la femme.

Chez l'homme, le taux de mortalité standard a augmenté, passant de 0,9 à 1,7 pour 100 000 habitants entre 1980 et 2012. Toutefois cette croissance s'est ralentie depuis les années 2000. Chez la femme, le taux de mortalité a également augmenté passant de 0,8 à 1,1 pour 100 000 habitants puis s'est stabilisé depuis 2010 à 1 pour 100 000.

En 2012, le mélanome a fait 1672 décès soit 1,1% de l'ensemble de la mortalité par cancer. La mortalité est plus élevée chez l'homme que chez la femme malgré une incidence plus importante chez la femme : 57% des décès liés au mélanome sont masculins. Chez l'homme c'est la 10ème cause par cancer tandis que chez la femme c'est la 13ème cause. Ceci s'explique par le fait que les femmes seraient plus vigilante devant l'apparition de lésions suspectes et consulteraient plus tôt. (46, 48)

Une dissociation mortalité/incidence est observable : le nombre de décès liés au mélanome était plus faible que le nombre de cas incidents. En 2012, 1 décès pour 6 cas incidents de mélanome chez l'homme et 8 cas incidents chez la femme étaient observés. Ceci suggère que les mélanomes identifiés sont de meilleurs pronostic,
hypothèse renforcée par le fait que l'épaisseur des mélanomes identifiés diminue avec les années. (27)

A l'échelle européenne, la France se situe dans la moyenne du taux de mortalité européen (15 724 cas/an). Un gradient de mortalité Nord-Sud est observé comme pour l'incidence. A l'échelle mondiale, selon l'étude Globocan 2012, 55 488 personnes sont décédées en 2012 soit 0,7/100 000 personnes/an. Le taux de mortalité le plus élevé est celui de l'Australie avec 4,1 décès par an/100 000 personnes. (59)
Partie II
Du diagnostic au traitement

Le mélanome est le cancer de la peau le plus grave. Détecté suffisamment tôt il peut la plupart du temps être guéri. Malheureusement, en quelques mois un mélanome peut se métastaser. Son diagnostic est alors tardif et les traitements possibles sont beaucoup moins efficaces. Donc la détection précoce est la meilleure chance de guérison. Agir rapidement est vital. Pour cela il faut surveiller sa peau régulièrement.

En présence d'une lésion suspecte de la peau, les objectifs de la démarche diagnostique sont :
- la confirmation de la présence d'un mélanome
- l'identification de son type histologique
- la détermination du stade
- l'élaboration d'un plan de traitement

Cette démarche diagnostique comporte de nombreux examens. Le diagnostic de présomption du mélanome est basé sur l'examen clinique avec l'utilisation du dermatoscope. Puis le diagnostic de certitude est basé sur l'examen anatomopathologique. Même s'ils paraissent longs, ces examens sont indispensables pour déterminer le traitement le mieux adapté à la tumeur.

II.1. L'examen clinique de la peau : le diagnostic de présomption

Une prise de sang ne permet pas la détection d'un mélanome. Seuls les signes cutanés peuvent faire suspecter la tumeur.
II.1.1 L'examen clinique à l'œil nu

L'examen clinique à l'œil nu fait appel à deux méthodes analytiques visuelles : la règle ABCDE et la liste revisitée en 7 points de Glasgow. Ces deux méthodes ont une spécificité et une sensibilité élevées, à condition que le dermatologue qui les pratique ait une bonne connaissance de la sémiologie des mélanomes.

II.1.1.1 Les circonstances de consultation

Il faut insister sur le fait que tout le monde peut développer un mélanome, même les jeunes. Mais une surveillance particulière sera apportée aux personnes ayant :
- une peau claire, les cheveux blonds ou roux : un phototype cutané de type I
- plus de 50 grains de beauté
- de nombreuses tâches de rousseur
- des grains de beauté > 5 mm et irréguliers
- des antécédents familiaux de mélanome
- eu des coups de soleil intenses avant l'âge de 15 ans
- vécu dans un pays de forte intensité solaire
- une activité professionnelle donnant lieu à des expositions solaires intenses
- une immunodépression acquise ou induite par des immunosuppresseurs
- déjà eu un mélanome
- déjà été exposé aux rayonnements UV artificiels (cabine de bronzage)

Pour ces patients « à risque » il est recommandé d'effectuer un auto-examen de la peau par trimestre et un examen par le dermatologue une fois par an. L'ensemble du tégument du patient est alors examiné par le dermatologue.

Plusieurs signes d'alerte peuvent et doivent alerter et conduire à consulter rapidement un dermatologue. L'apparition sur une peau saine d'une lésion suspecte brune, noire ou rougeâtre qui évolue rapidement ou change rapidement doit alerter le patient. La modification d'un grain de beauté doit aussi faire réagir.
Le principal problème est de savoir faire la différence entre un grain de beauté et un mélanome. Tous les grains de beauté d'une même personne se ressemblent donc si un grain de beauté diffère des autres il doit attirer l'attention. C'est le principe du vilain petit canard.

L'examen de la peau par un dermatologue sera donc réalisé dans les circonstances suivantes :
- pour surveiller des personnes à risque de développer un cancer de la peau
- quand une lésion suspecte apparaît
- dans le suivi d'un diagnostic de mélanome

Lors de cette consultation chez le dermatologue, ce dernier fait un entretien avec son patient avant de procéder à l'examen de la peau. Lors de l'entretien il identifie les possibles facteurs de risque. Il demande à son patient s'il a observé une modification locale de sa peau et il fait un bilan de son état de santé.

Les symptômes les plus fréquents sont des changements visibles de taille, de forme, de couleur et d'élévation de cette tache pigmentée récente ou du nævus préexistant.

II.1.1.2. La règle ABCDE

Le diagnostic de mélanome est suspecté cliniquement lorsqu'une lésion pigmentée a les critères définis par la règle ABCDE (cf figure14). Elle est utilisée à la fois pour le diagnostic clinique et pour la surveillance. C'est la méthode consensuelle utilisée par les dermatologues français.

- Asymétrie de la lésion : une moitié de la lésion ne ressemble pas à l'autre moitié
- Bords irréguliers : les bords sont dentelés ou irréguliers
- Couleur non homogène : plusieurs couleurs sont présentes allant du brun clair au noir foncé ou rougeâtre ou achronique
- Diamètre supérieur à 6 mm ; un mélanome dépisté tôt peut être petit
Évolution de la taille, de la couleur, de l'aspect ou de l'épaisseur de la tumeur

Plus la lésion répond à de critères plus le risque que ce soit un mélanome augmente. Mais attention cette règle permet juste d'évoquer une suspicion de mélanome et non de l'affirmer. Cette règle simple est utilisée pour l'autoexamen des personnes à risque.

Il y a des exceptions à la règle ABCDE : les mélanomes de petite taille (<6mm) et les mélanomes nodulaires.(27, 62)

II.1.1.3. La règle ABCDE

Figure 14 : La règle ABCDE. (64)

II.1.1.3. La règle en 7 points de Glasgow

La liste revisité en 7 points de Glasgow, dérivée de la règle ABCDE, comprend :

- des critères majeurs :
 changement de la taille de la lésion
 changement de la forme
 changement de la couleur
– des critères mineurs :
 – diamètre > 7 mm
 – inflammation
 – croûte ou saignement
 – changement de sensation (par exemple prurit)

Elle donne une prépondérance au concept d'évolution. Une lésion est suspecte quand elle répond à 1 critère majeur ou 3 critères mineurs. Cette liste revisitée est plus sensible et plus spécifique que la règle ABCDE. Elle est recommandée par les autorités anglaises. Tandis que les autorités françaises recommandent indifféremment la règle ABCDE ou la liste de Glasgow. (64, 65)

II.1.2. L'examen par dermatoscopie

Le dermatologue effectue un examen complet de l’ensemble du tégument. En effet comme vu dans la partie précédente, le mélanome peut se développer sur n’importe quelle zone du corps. Le cuir chevelu, les paumes des mains, les pieds, les espaces interdigitaux, les muqueuses buccales et génitales doivent être observés. La dermatoscopie permet l’étude sémiologique des lésions cutanées, principalement pigmentées. Elle augmente la sensibilité et la spécificité du diagnostic par rapport à la clinique seule.

II.1.2.1. L’appareil

Après un examen à l’œil nu le dermatologue utilise un dermatoscope. Cet appareil, microscope de surface, comprend une ou plusieurs lentilles grossissantes et un système d'éclairage. Il peut être couplé à des caméras digitales et des ordinateurs pour l’enregistrement des images (cf figure 15). Il permet d'observer de façon non invasive des structures épidermiques, dermo-épidermiques et dermiques, accessibles et non-accessibles à l’œil nu (cf figure 16). (27)
Il.1.2.2. La démarche diagnostique devant une lésion pigmentaire

Cette démarche diagnostique comprend deux étapes. Dans un premier temps, l'examen dermatoscopique va différencier les lésions mélanocytaires des lésions non mélanocytaires. Si le dermatologue observe un réseau pigmenté, des globules agrégés et des courants radiaires la lésion observée est mélanocytaire.

Si aucun critère de lésion non mélanocytaire n'est présent la lésion est considérée d'emblée mélanocytaire. Lorsque ce diagnostic de lésion mélanocytaire est établi, le dermatologue passe à la seconde étape. La dermatoscopie va alors distinguer les lésions bénignes des lésions malignes. Pour se faire, le médecin s'appuie sur 4 algorithmes de décision dont l'analyse de l'architecture globale et le score de la règle ABCDE dermatoscopique.

Sur l'image dermatoscopique le dermatologue observe la distribution et l'architecture des pigments mélaniques dans l'épiderme et le derme. L'appareil lui permet aussi d'analyser la disposition des vaisseaux capillaires cutanés (cf figure 16). (27)
II.1.2.3. Les performances diagnostiques de l'examen dermatoscopique

En 2007, la HAS s'est basée sur 2 méta-analyses pour affirmer que la dermatoscopie augmentait significativement la performance du diagnostic de mélanome. (68)

Le dermatoscope peut faire des photographies numériques des lésions (cf figure 15). Ainsi le dermatologue, utilisant toujours le même dermatoscope et dans les mêmes conditions, a la possibilité de comparer les lésions par rapport à un état antérieur. La HAS, toujours en se basant sur les 2 méta-analyses, a conclu que : « la sensibilité du diagnostic dermatoscopique était significativement augmentée quand les images de suivi étaient disponibles (de 58 à 71%) ». La surveillance dermatoscopique, avec la prise et l'enregistrement des photographies, des nævus atypiques et des patients à très haut risque permettrait d'éviter des exérèses inutiles pour lésion bénigne. En plus de toutes ces analyses, la HAS a remarqué que la dermatoscopie permettait un diagnostic du mélanome à un stade précoce.

Les indications de la surveillance dermatoscopique sont :
- un nævus atypique sans signes cliniques et dermatoscopiques de malignité
- les patients à très haut risque de développer un mélanome (cités précédemment)

Le schéma synthétique, construit sur la base du résultat de l'analyse des publications disponibles et de l'avis d'experts, positionne la surveillance dans la stratégie de diagnostic dermatoscopique des lésions pigmentaires. (68)

II.1.3. Le résultat de l'examen de la peau

Suite à l'analyse clinique et dermatoscopique de l'ensemble du tégument de la peau, le dermatologue peut se retrouver face à 4 situations.

○ La lésion révèle aucune anomalie et le sujet n'a pas de facteur de risque. C'est une lésion bénigne. Une surveillance aura lieu au bout de 5 ans. Par contre le médecin
insistera sur l'importance de l'autosurveillance et de la photoprotection.

○ L'examen dermatologique est normal mais le patient est à risque. Une surveillance annuelle lui est proposée. Le dermatologue peut effectuer une photographie du corps entier et un suivi numérique.

○ La lésion est suspecte. Le dermatologue effectue une exérèse sous anesthésie locale de la lésion qu'il envoie à un médecin anatomopathologiste. L'étape de l'exérèse est détaillée dans la partie suivante.

○ La lésion est suspecte mais le médecin n'a pas suffisamment d'indice pour procéder à la biopsie. Il propose alors à son patient de le revoir à 3 mois et à 1 an pour réévaluer la lésion. Cette situation reste exceptionnelle.

II.2. De l'examen anatomopathologique à la classification

Le diagnostic de présomption de mélanome obtenu par l'examen clinique de la peau doit être confirmé par l'exérèse de la lésion. Le repérage clinique et dermatoscopique consiste juste à confirmer la nature mélanocytaire de la lésion. Dans un second temps, c'est seulement si le dermatologue suspecte fortement un mélanome que l'examen anatomopathologique se fait par une biopsie-exérèse. La pièce opératoire alors obtenue est examinée au laboratoire pour confirmer ou infirmer le diagnostic et déterminer le stade pTNM.

II.2.1. L'exérèse diagnostique : la biopsie-exérèse

II.2.1.1. Principe et intérêt

Toute lésion suspecte d'être un mélanome implique un geste chirurgical : la biopsie-exérèse. Elle consiste à enlever complètement la lésion cutanée, en
prélevant en plus des marges saines au pourtour de la lésion. La biopsie donne deux informations importantes :

- si le grain de beauté est malin ou bénin
- si le grain de beauté est malin : la profondeur de la tumeur dans la peau et d'éventuels signes d'ulcération associée

II.2.1.2. La technique

La biopsie a lieu dans le cabinet du dermatologue en ambulatoire sous anesthésie locale. Le médecin fait une résection complète de la lésion, dans les plans cutané et sous-cutané, selon une forme d'ellipse (cf figure 17). Il va jusqu'à l'hypoderme. La longueur de l'ellipse est trois fois plus grande que sa largeur. Ceci permet une suture plus facile. Elle se fait avec un fil non résorbable. La profondeur de la lésion influence la classification et ainsi le traitement de la tumeur donc l'exérèse doit être complète. Pour se faire, l'échantillon prélevé doit respecter des règles. Selon la profondeur de la lésion (indice de Breslow) les marges saines à inclure dans l'exérèse varie. Pour un mélanome in-situ, les marges saines seront de 5 mm. Par contre si la lésion fait plus de 4mm, les marges saines pourront atteindre 3 cm. La biopsie-exérèse prend moins d'une heure. Suite à l'intervention, des antalgiques peuvent soulager une éventuelle douleur. Le patient devra revenir pour faire retirer les fils et faire surveiller la cicatrisation. Le fragment de peau retiré par la biopsie-exérèse est transmis au médecin anatomopathologiste qui analyse les tissus sous microscope. (69, 70, 71)

Figure 17 : La biopsie elliptique. (72)
II.2.2. L'examen anatomopathologique : diagnostic de certitude

L'examen clinique de la peau et l'examen dermatoscopique aboutissent au diagnostic de présomption. Seul l'examen anatomopathologique va confirmer le diagnostic de mélanome. Pour se faire cette analyse histologique va confirmer la nature mélanocytaire de la lésion puis affirmer la malignité de la lésion. Elle évalue le niveau d'invasion de la tumeur en profondeur : c'est le niveau de Clark et mesure l'épaisseur de la tumeur : c'est l'indice de Breslow. L'examen précise aussi la présence d'une ulcération et mesure l'index mitotique.

II.2.2.1. L'indice de Breslow

Lors de l'analyse sous microscope de la pièce prélevée, le médecin anatomopathologiste détermine l'épaisseur de la tumeur ou indice de Breslow. L'épaisseur tumorale selon Breslow est la distance en millimètre entre la partie supérieure de la couche granuleuse de l'épiderme et la cellule tumorale la plus profondément située dans le derme ou l'hypoderme (cf figure 18). Cet indice témoigne de l'aptitude de la tumeur à envahir les tissus en profondeur. Il reflète sa capacité à rejoindre les vaisseaux sanguins et lymphatiques environnants. Plus une tumeur est épaissie, plus elle a envahi la peau en profondeur et plus elle est agressive. L'épaisseur de la tumeur au moment de son exérèse est l'élément essentiel du pronostic, d'où l'importance une fois de plus du diagnostic précoce.

Figure 18 : Analyse de l'indice de Breslow. (73)
Dans la majorité des études, l'indice de Breslow est considéré comme le premier et le seul paramètre pronostique indépendant, fiable et reproductible. En effet, le score de Breslow évalue le pronostic de survie globale à cinq ans d'un patient atteint d'un mélanome. (74, 75)

Pour les mélanomes épais la probabilité de décès est maximale à 40 mois tandis qu'elle est de 72 mois pour un mélanome mince (cf figure 19).

![Diagramme de décès par mois en fonction de l'indice de Breslow.](image)

Figure 19 : Pourcentages de décès par mois en fonction de l'indice de Breslow. (76)

Si le mélanome est ulcéré la mesure d'épaisseur de la tumeur est surestimée donc l'indice de Breslow ne peut être utilisé car le risque serait sous-estimé.

II.2.2.2. Le niveau de Clark

Le niveau d'envahissement selon Clark est déterminé d'après la profondeur de pénétration de la tumeur. Il décrit à quelle profondeur la tumeur a pénétrée dans les différentes couches de la peau. La classification de Clark définit 5 stades basés sur le franchissement des barrières anatomiques de la peau (cf figure 20) :

- niveau I : envahissement épidermique
- niveau II : envahissement du sommet des papilles dermiques
- niveau III : envahissement de tout le derme papillaire
– niveau IV : rupture de la barrière réticulaire et envahissement du derme réticulaire
– niveau V : envahissement de derme profond et de l'hypoderme

(74)

Figure 20 : Les niveaux d'invasion de Clark. (77)

Clark a relié le pronostic à différents niveaux de profondeur de l'infiltration tumorale du derme. Les niveaux I et II de Clark ont un excellent pronostic, mais la mortalité s'accroît progressivement du niveau III au niveau V. Ainsi le pronostic est d'autant plus grave que l'envahissement est profond. (78)

II.2.2.3. Les autres facteurs pronostiques

– L'ulcération en surface de la tumeur

L'ulcération en surface du mélanome est également un important facteur de pronostic. Une ulcération de l'épiderme peut parfois être visible à l'œil nu : le mélanome saigne. Mais très souvent elle n'est pas visible à l'œil nu d'où l'importance de l'examen anatomopathologique. Cette ulcération témoigne d'un désordre important des mélanocytes entraînant une agression des couches cutanées. La présence d'ulcération est donc un élément péjoratif quelque soit le stade de la maladie. (79)
- **L’index mitotique**

L’index mitotique c'est-à-dire le nombre de mitose dermique par mm² est utilisé pour les mélanomes fins : mélanomes de moins de 1 mm d'épaisseur. Il s'agit du deuxième plus puissant facteur pronostique de la survie après l'indice de Breslow chez les patients avec un mélanome cliniquement localisé (stades I et II). (80)

Cliniquement, l'index mitotique rend compte de la vitesse de croissance du mélanome. (81) Les mélanomes à croissance rapide sont associés à une plus grande agressivité et à un risque plus élevé de récidive. (82)

II.2.2.4. Le compte rendu anatomopathologique

Le diagnostic du mélanome s'accompagne d'une multitude d'informations délivrées dorénavant de façon systématique dans le rapport anatomopathologique. Ce dernier comprend tous les éléments nécessaires à sa classification pTNM permettant sa prise en charge thérapeutique et son évaluation pronostique. Le compte rendu doit comporter les éléments ci-dessous :

Renseignements cliniques (fournis par le clinicien) :
- identité du patient (date de naissance, sexe)
- localisation de la lésion
- taille de la lésion
- hypothèses diagnostiques du clinicien
- existence d’un syndrome des nævus atypiques
- coup de soleil, irritation, traumatisme ou geste (biopsie) préalable
- grossesse
- antécédent de mélanome

Critères d'examen macroscopique obligatoires :
- taille du prélèvement
- taille de la tumeur
- mesure de la plus petite marge d’exérèse macroscopique
Critères obligatoires pour la prise en charge thérapeutique :
- diagnostic de tumeur mélanocytaire maligne : mélanome
- caractère primitif ou non
- indice de Breslow ou épaisseur tumorale maximale
- présence d’une ulcération
- qualité de l’exérèse : marges envahies ou saines
- activité mitotique (mitoses/mm²) utile uniquement dans les stades T1 ≤ 1 mm
- présence de signes de régression tumorale
- type histologique (SSM, nodulaire, Dubreuilh ...)
- métastase en transit (lésions d'au moins 0,05 mm séparées de la tumeur primitive par du derme)

Critères facultatifs :
- phase de croissance horizontale ou verticale
- présence d’un nævus associé
- présence d’emboles vasculaires
- présence d’envahissement péri-nerveux

Il.2.3. La détermination du stade

Il.2.3.1. La classification TNM

La classification TNM est un système international proposé par le chirurgien français Pierre Denoix en 1943 pour classer les cancers selon leur extension anatomique.

En 2009, l'American Joint Committee on Cancer a publié la septième édition. Les trois lettres symbolisent la propagation des cellules cancéreuses du site de la tumeur primitive (T), dans les ganglions lymphatiques voisins (N pour Node) et à distance pour former des métastases (M). Chaque lettre est affectée d'un coefficient. Ces trois critères permettent de définir le stade du cancer selon la classification TNM pour « Tumor, Node, Metastasis » autrement dit « Tumeur, Ganglions, Métastases ». Actuellement c'est la classification pTNM de l’UICC (Union internationale contre le
cancer) et de l'AJCC (American Joint Committee on Cancer) 7ème édition qui est utilisée (cf figure 20).

(84)

- Les caractéristiques de la tumeur primitive : c'est le paramètre T.

L'indice de Breslow et l'ulcération sont pris en compte dans ce paramètre. Si la mesure de l'épaisseur révèle qu'il est intraépidermique le mélanome est au niveau I de Clark autrement dit c'est un mélanome in-situ, non invasif. Si la mesure révèle qu'il s'est étendu au derme c'est un mélanome invasif. Dans ce dernier cas une RCP (Réunion de Concertation Pluridisciplinaire) réunit au moins trois spécialités différentes (dermatologue, oncologue, chirurgien, anatomopathologiste ...) pour discuter de chaque cas. Ils valident le diagnostic et évaluent les bénéfices et les risques encourus pour proposer une prise en charge la mieux adaptée au cas du malade. Ils vont aussi évaluer la qualité de vie qui va en découler. La RCP pourra aussi proposer un bilan d'extension qui sera décrit dans la prochaine partie.

La lésion est cotée T0 quand la tumeur primitive n'est pas localisée. Tandis que les tumeurs les plus étendues sont cotées T4. Ta signifie qu'il n'y a pas d'ulcération tandis que Tb qu'il y a une ulcération. (85)

- L'atteinte ou non des ganglions lymphatiques, la présence ou non de métastases en transit : c'est le paramètre N.

Pour rechercher une extension régionale, la technique du ganglion sentinel est la plus sensible pour détecter une atteinte métastatique ganglionnaire. Cette technique sera détaillée dans la partie suivante. Lorsque les cellules cancéreuses s'échappent de la tumeur primitive elles peuvent toucher les ganglions lymphatiques à proximité. Ces mêmes cellules cancéreuses en allant de la tumeur primitive au ganglion lymphatique peuvent former de nouvelles tumeurs appelées métastases en transit. N0 signifie qu'il n'y a pas d'envahissement de ganglions régionaux. (236)

- La présence ou non de métastases à distance : c'est le paramètre M.

Les ganglions lymphatiques ne sont pas les seuls organes à être envahis. Les
métastases à distance peuvent se retrouver au foie, au poumon, au cerveau. En l’absence de métastases connues la tumeur est cotée M0 et M1 en leur présence, unique ou multiple.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Epaisseur (mm)</th>
<th>Ulcération/mitoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tis</td>
<td>Mélanome in situ</td>
<td>NA</td>
</tr>
<tr>
<td>T1</td>
<td>≤ 1</td>
<td>A: sans ulcération et mitoses < 1/mm² B: avec ulcération ou mitoses ≥ 1/mm²</td>
</tr>
<tr>
<td>T2</td>
<td>1,01-2</td>
<td>A: sans ulcération B: avec ulcération</td>
</tr>
<tr>
<td>T3</td>
<td>2,01-4</td>
<td>A: sans ulcération B: avec ulcération</td>
</tr>
<tr>
<td>T4</td>
<td>> 4</td>
<td>A: sans ulcération B: avec ulcération</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Nombre de ganglions métastatiques</th>
<th>Charge métastatique ganglionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>N1</td>
<td>1</td>
<td>A: micrométastase* B: macrométastase**</td>
</tr>
<tr>
<td>N2</td>
<td>2-3</td>
<td>A: micrométastase* B: macrométastase** C: métastases en transit ou satellites sans ganglions métastatiques</td>
</tr>
<tr>
<td>N3</td>
<td>≥ 4 ganglions lymphatiques métastatiques ou métastases en transit ou satellites avec ganglions lymphatiques métastatiques</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>Site</th>
<th>LDH sérique</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Pas de métastase à distance</td>
<td>NA</td>
</tr>
<tr>
<td>M1a</td>
<td>Métaстases à distance de la peau, du tissu sous-cutané ou d’un ganglion</td>
<td>Normal</td>
</tr>
<tr>
<td>M1b</td>
<td>Métaстases pulmonaires</td>
<td>Normal</td>
</tr>
<tr>
<td>M1c</td>
<td>• Toute autre métastase viscérale</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>• Toutes métastases à distance</td>
<td>Elevé</td>
</tr>
</tbody>
</table>

NA: non applicable; LDH: lactate déshydrogénase; TNM: tumor, node, metastase.
* Les micrométastases sont diagnostiquées avec la technique du ganglion sentinelle.
** Les macrométastases sont définies comme ganglions métastatiques cliniquement décelables et confirmés histologiquement.

Figure 21 : Classification TNM des mélanomes selon l’AJCC (American joint committee on cancer – AJCC, 7e édition, valable dès 1.1.2010) (86)
II.2.3.2. La stadification du mélanome (88)

Après exérèse de la lésion et analyse histologique, l’anatomopathologiste délivre le compte rendu anatomopathologique précisant le stade clinique de la maladie. L’AJCC a établi une classification des mélanomes en stades pronostiques qui prend en compte les trois critères détaillés dans le paragraphe précédent (cf figure 22). Connaître le stade du mélanome est fondamental pour estimer l’étendue du cancer et le pronostic du patient et ainsi décider du traitement. Plus le stade est élevé moins le pronostic est bon.

![Classification par stade du mélanome cutané](image)

*Définit cliniquement et radiologiquement.

**Défini après la pathologie du ganglion sentinel ou du curage ganglionnaire.

Figure 22 : Classification par stade du mélanome cutané
(American joint committee on cancer – AJCC, 7e édition, valable dès 1.1.2010) (86)

Stade 0 : mélanome in situ

La tumeur est limitée à l’épiderme donc aucune cellule cancéreuse n’est retrouvée dans les ganglions lymphatiques (N0) et aucune métastase n’est présente (M0). Le stade 0 est défini par TisN0M0. Tis signifie Tumeur in situ (cf figure 23). Les patients avec un mélanome stade 0 sont considérés à très faible risque de récidive locale, régionale ou de métastases à distance.
- **Stade I : mélanome localisé et faible risque évolutif**

Le mélanome de stade I est défini comme une tumeur de moins de 2 mm d'épaisseur. Il peut ou non présenter une ulceration. Aucune cellule cancéreuse n'est retrouvée dans les ganglions lymphatiques (N0) et aucune métastase n'est présente (M0). Le stade I est divisé en IA et IB en fonction de la combinaison de l'indice de Breslow, de l'ulcération et de l'activité mitotique. Avec traitement, le mélanome de stade I a un risque de récidive de métastases locales ou à distance faible.

- **Stade II : mélanome localisé et risque de rechute**

Le mélanome de stade II est défini par son épaisseur et son ulceration. Il n'y a aucune preuve de l'invasion des ganglions lymphatiques locaux donc N0 ou distants donc M0. Le stade IIA et IIB sont possibles tout comme le stade I. Avec traitement, le mélanome de stade II a un risque de récidive de métastases locales ou à distance considéré comme intermédiaire à importante.
– **stade III : mélanome primitif avec atteinte régionale ganglionnaire ou cutanée**

Dans le mélanome de stade III soit la tumeur s’est propagée aux ganglions lymphatiques, soit des nodules métastatiques se trouvent à moins de 2 cm de la tumeur primitive, soit il y a des nodules métastatiques en transit. Ce stade se divise en IIIA, IIIB et IIIC en fonction de la localisation, du nombre et de l’étendue des métastases locorégionales. Les principaux facteurs pronostiques à ce stade sont : le nombre de ganglions envahis par les métastases, l’épaisseur tumorale initiale et la présence d’une ulceration. Avec le traitement, le stade III a un risque de récidive, au même endroit ou à des sites plus éloignés, qui est entre intermédiaire et important. Même pour un mélanome de stade III, plus tôt le mélanome est découvert et traité, meilleur est le résultat.
– **Stade IV : mélanome métastatique ou généralisé**

Le mélanome s'est propagé au-delà du ganglion lymphatique régional c'est-à-dire à d'autres ganglions lymphatiques ou il s'est propagé à d'autres organes comme le foie, les poumons ou le cerveau. Les facteurs pronostiques dans le stade IV sont : la localisation des métastases distantes, le nombre et la taille des tumeurs et le taux sérique de LDH (Lactate Déshydrogénase). Des taux élevés de cette enzyme indiquent généralement que la tumeur s'est propagée aux organes internes.

Figure 27 : Mélanome de stade IV. (87)

II.2.4. Le bilan d'extension

Lorsque le clinicien a le compte rendu anatomopathologique avec la confirmation de mélanome il annonce le diagnostic à son patient. Il lui annonce la suite de sa prise en charge : le bilan d'extension. Il permet de préciser le stade du mélanome autrement dit son degré d'extension. Ceux sont les médecins réunis en RCP qui décident de réaliser ou non le bilan d'extension. Il est envisagé avant tout traitement du mélanome.

II.2.4.1. L'examen clinique

Le bilan d'extension débute par l'examen clinique. Il est réalisé quelque soit le
stade du mélanome. Il comprend un interrogatoire sur les facteurs de risque de cancer cutané : les expositions solaires, le phototype, les brûlures solaires, les antécédents personnels et familiaux. Puis le dermatologue fait un examen clinique exhaustif. Il examine et palpe l'ensemble du tégument à la recherche d'une extension locale, d'une lésion cutanée à distance, d'un second mélanome ou d'une autre tumeur cutanée. Une palpation ganglionnaire recherchera un éventuel envahissement ganglionnaire. Le dermatologue examine aussi les nævus et notamment les nævus atypiques. (89, 90)

II.2.4.2. Les examens d'imagerie

Actuellement, aucun consensus sur le bilan d'imagerie initial n'existe. Il est adapté au risque d'atteinte à distance autrement dit à l'indice de Breslow.

- **Une échographie locorégionale** de la zone de drainage est préconisée pour les stades II et III. Elle repère d'éventuelles modifications de la structure des ganglions évocatrices de l'envahissement de ces derniers par les cellules cancéreuses.

- **Des TomoDensitométires (ou scanners) thoraco-abdomino-pelviennes et cérébrales** sont effectuées aux stades IIC et III pour détecter d'éventuelles métastases ou repérer des ganglions atteints. Ils déetectent des anomalies de petites tailles.

- **Une Tomographie par Emission de Positons (TEP)** par injection de glucose marqué est proposée qu'aux stades II et III. Les cellules tumorales sont plus actives que les cellules normales donc elles consomment d'avantage de glucose : le glucose marqué se fixe ainsi d'avantage sur les cellules tumorales. Cet examen permet de rechercher d'éventuelles métastases invisibles avec les autres techniques d'imagerie. Par contre il ne permet pas de visualiser les lésions mesurant moins de 5 mm, d'explorer le cerveau ou les reins. (91)
II.2.4.3. La technique du ganglion sentinelle

Les patients atteints d'un mélanome dont l'indice de Breslow est supérieur à 1 mm peuvent avoir des micrométastases ganglionnaires non repérables à la palpation car les ganglions non pas augmentés de volume. Pour détecter ces métastases ganglionnaires une ablation du ganglion le plus proche de la tumeur est faite. C'est la technique du ganglion sentinelle. Elle est indiquée chez les patients avec un indice de Breslow supérieur à 1 mm et chez ceux avec un indice de Breslow inférieur à 1 mm mais avec une ulcération.

Un colorant bleu (bleu patenté) ou un traceur radioactif (technétium) est injecté sous la lésion qui a subi l'exérèse. La substance va être drainée par les vaisseaux lymphatiques et aller directement au premier ganglion située sur le circuit de drainage lymphatique : c'est le ganglion sentinelle. Ce dernier est alors repéré, retiré par le chirurgien puis envoyé au laboratoire pour rechercher la présence de cellules cancéreuses (cf figure 28).

Si le ganglion sentinelle est négatif, le risque évolutif est faible : le patient aura un suivi régulier en fonction de l'indice de Breslow obtenu à l'examen anatomopathologique initial. Si le ganglion sentinelle est positif : le patient est à haut risque de récidive. Les possibilités de faire d'autres examens d'imagerie et de faire un curage ganglionnaire total seront discutées lors d'une RCP. La technique du ganglion sentinelle présente un enjeu pronostique et thérapeutique essentiel. En effet l'analyse du ganglion sentinelle détermine le stade de la tumeur. (92)

Figure 28 : Le ganglion sentinelle. (23)
II.2.4.4. La biologie

Le dosage du Lactate Déshydrogénase (LDH) est une analyse sanguine. Un taux anormalement élevé de LDH peut indiquer des métastases. Le médecin effectue alors des tests complémentaires pour rechercher des métastases. Un taux élevé de LDH est un facteur de mauvais pronostic dans les mélanomes métastatiques de haut stade. Par contre il n’a aucun intérêt dans le diagnostic précoce. Actuellement aucun biomarqueur du mélanome n’est pertinent dans le diagnostic précoce. (91, 93)

II.3. La prise en charge thérapeutique

Dès que le diagnostic de mélanome est confirmé par l'examen anatomopathologique la prise en charge thérapeutique est déterminée en concertation avec le patient et l'équipe de la RCP. La prise en charge est avant tout chirurgicale. Des traitements adjuvants peuvent être envisagés en fonction du stade et de la localisation du mélanome et de l'état de santé du patient. Selon les cas, les traitements peuvent avoir des objectifs différents :
 – guérir le cancer en supprimant toutes les cellules cancéreuses
 – réduire le risque de récidive
 – empêcher le cancer de se développer et de se propager
 – améliorer la qualité de vie du patient en diminuant la douleur par exemple

II.3.1. La chirurgie

II.3.1.1. Excision de la tumeur primitive

Classiquement, le mélanome est excisé complètement mais sans marge de sécurité dans un premier temps pour confirmer le mélanome. Puis selon le diagnostic histologique et l'indice de Breslow une reprise chirurgicale systématique préventive est effectuée avec des marges de sécurité de peau saine. Ces marges de sécurité
sont définis par la SOR (Standard Option Recommandations) de 2005 en fonction de l'épaisseur tumorale (cf figure 29). Pour les mélanomes de Dubreuilh non invasifs, une marge de 1 cm est recommandée.

<table>
<thead>
<tr>
<th>Indice de Breslow</th>
<th>Marge d'exérèse recommandée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mélanome in situ</td>
<td>0,5 cm</td>
</tr>
<tr>
<td>0 – 1 mm</td>
<td>1 cm</td>
</tr>
<tr>
<td>1,01 – 2 mm</td>
<td>1 – 2 cm</td>
</tr>
<tr>
<td>2,01 – 4 mm</td>
<td>2 cm</td>
</tr>
<tr>
<td>> 4 mm</td>
<td>2 – 3 cm</td>
</tr>
</tbody>
</table>

Figure 29 : Les marges de sécurité selon la SOR 2005. (91)

L'excision complète d'un mélanome est le seul traitement curatif existant du mélanome. Elle est curative pour les stades I et II. Par contre une marge d'exérèse supérieure à 3 cm n'a pas d'intérêt thérapeutique.

II.3.1.2. La biopsie du ganglion lymphatique sentinelle

Cette biopsie est réalisée après l'exérèse élargie. Elle est indiquée chez les patients avec une tumeur supérieure à 1 mm ou ulcérée. Si des cellules cancéreuses sont retrouvées dans la marge d'exérèse cette biopsie du ganglion sentinelle est pratiquée. Elle est aussi recommandée si une invasion des vaisseaux sanguins ou lymphatiques par les cellules cancéreuses est observée ou si le patient est jeune avec un index mitotique élevé.

Comme le ganglion sentinelle est le premier ganglion drainé sa biopsie permet de savoir si les cellules cancéreuses ont commencé à se propager. Le résultat de sa biopsie orientera le traitement adjuvant à la chirurgie.
II.3.1.3. Le curage ganglionnaire

Lorsqu'un patient possède des ganglions locorégionaux le traitement de référence est le curage systématique d'au moins une aire ganglionnaire atteinte. Le curage ganglionnaire consiste à retirer l'ensemble des ganglions lymphatiques situés dans la zone de drainage du mélanome. Il n'est pas systématique car il n'améliore pas le pronostic vital et il engendre de nombreux effets indésirables. Le plus fréquent est le lymphœdème. Le curage ganglionnaire a un but curatif avec un objectif d'absence de reliquat tumoral clinique et histologique. (94, 95)

II.3.1.4. L'exérèse chirurgicale des métastases viscérales

Dans le stade IV, le mélanome s'est propagé au-delà du ganglion lymphatique régional. Il peut envahir des organes vitaux comme le foie, les poumons, le cerveau, les os et les tissus mous comme la peau, les tissus sous-cutanés, les ganglions lymphatiques éloignés. Bien qu'aucun traitement ne permette de prolonger la survie des patients (6 à 8 mois), de nombreux traitements expérimentaux sont en étude. Quelque soit le traitement son objectif est palliatif. En effet la chirurgie a une visée palliative : elle va diminuer les symptômes. L'exérèse des métastases viscérales est envisagée en RCP chaque fois qu'elle est techniquement possible et si elles sont peu nombreuses. (96, 97)

II.3.2. La chimiothérapie

La chimiothérapie n'est indiquée qu'au stade de mélanome métastatique. En effet, le traitement des mélanomes métastatiques non résécables est de plus en plus conditionné par l'émergence de thérapies ciblées : inhibiteurs de BRAF, MEK et KIT. Donc tout mélanome métastatique doit aujourd'hui bénéficier d'un génotypage pour recherche mutationnelle par une PCR. Puis le choix du traitement doit être discuté en RCP. Au regard du pronostic de la maladie et malgré l'émergence de nouvelles molécules l'inclusion du patient dans un essai clinique doit être privilégiée et prioritaire. Même si de nouvelles molécules obtiennent leur AMM, la chimiothérapie reste palliative avec des résultats décevant sur la survie globale.
II.3.2.1 Absence de mutation du gène BRAF : dacarbazine DETICENE®

Pour les patients ne présentant pas de mutation du gène BRAF la chimiothérapie de référence en première ligne reste la dacarbazine en monothérapie. Mais les taux et les durées de réponse faibles de la dacarbazine en monothérapie doivent inciter à privilégier l’inclusion dans un essai clinique dès la première ligne de traitement. La dacarbazine est la chimiothérapie de référence dans le mélanome métastatique depuis 40 ans.

C'est une prodrogue autrement dit elle a besoin d'un passage hépatique pour être activée. Le métabolite actif alors formé est le mitozolomide. C'est un analogue d'un précurseur des bases puriques se comportant comme un agent alkylant c'est-à-dire inhibant la synthèse d'ADN. Quelque soit les études, le taux de rémission ne dépasse jamais les 20%. (98) Les métastases ganglionnaires, pulmonaires et cutanées sont celles qui répondent le mieux à cette chimiothérapie. (90)

Selon son AMM, la dacarbazine en monothérapie est injectée en intraveineux pendant 5 jours toutes les 3 semaines à la dose de 200 à 250 mg/m²/jour. Elle peut aussi être administrée à la dose 850 mg/m² en une perfusion toutes les 3 semaines. (99)

Chez plus de 90% des patients traités une toxicité digestive est observée avec des nausées, des vomissements et une constipation. Pour prévenir ces vomissements et ces nausées, qui apparaissent environ 1h après l'injection, des antiémétiques sont administrés au patient. Une toxicité hématologique dose-dépendante est aussi observée chez 30 à 50% des patients. Elle apparaît vers J21 et est réversible à J35. Une leucopénie, une thrombopénie ou une anémie peuvent être observées. C'est pour cela qu'une surveillance hématologique est faite avant et après chaque cure. Un syndrome pseudo-grippal persistant 7 à 21 jours après l'injection est rarement observé. Des antipyrétiques sont alors administrés. (100)

Même si la dacarbazine est relativement ancienne les nouveaux anticancéreux ou les bithérapies n'ont pas montré d'amélioration significative de la survie. (101)
II.3.2.2. Présence de mutation du gène BRAF : vémurafénib ZELBORAF®

En 2011, le test BRAF a été effectué chez 3479 patients atteints d'un mélanome : 37,6% d'entre eux portaient la mutation. En effet les mutations du gène BRAF sont retrouvées chez 30 à 70% des mélanomes chez la population Caucasiennne. Ces mutations seraient corrélatées au phototype.

Compte tenu du bénéfice sur la survie globale qui est de 20% à 6 mois et sur la survie médiane sans progression qui est de 3 à 4 mois le vémurafénib est préféré à la dacarbazine. L'étude multicentrique BRIM III effectuée en 2010 avait pour objectif d'évaluer l'efficacité du vémurafénib face à la dacarbazine dans le traitement du mélanome métastatique exprimant la mutation BRAF. Une augmentation de la survie médiane de 8 mois pour la dacarbazine et de 12,3 mois pour le vémurafénib a été observée ainsi qu'une survie sans progression de respectivement 2,5 et 4,5 mois. Le taux de réponse confirmé pour les patients porteurs de mélanome avec la mutation BRAF de stade avancé est de 48,6% avec le vémurafénib contre seulement 5% avec la dacarbazine.

Ainsi le vémurafénib en monothérapie représente la première ligne de chimiothérapie. C'est un inhibiteur des tyrosines kinases conçu pour inhiber spécifiquement l'activité tyrosine kinase de la protéine BRAF. Comme toute thérapie ciblée la molécule se dirige spécifiquement contre une mutation pour inhiber la croissance des cellules tumorales. Il a obtenu son AMM en février 2012. Le médicament est administré par voie orale à hauteur de 4 comprimés de 240mg matin et soir. Il se prend en dehors des repas, 1h avant ou 2h après un repas, en respectant une intervalle de 12h entre les prises. Si le patient a oublié de prendre sa dose il peut la prendre jusqu'à 4h avant la dose suivante. Avant et pendant le traitement le médecin demande une formule sanguine avec une NFS, un ionogramme et un bilan hépatique. Un examen dermatologique avec dépistage de carcinomes épidermoides cutanés et un scanner thoracique pour le dépistage de carcinomes épidermoides non cutanés est préconisé. La fonction cardiaque sera évaluée avec un électrocardiogramme. La mise en place d'une contraception pendant et jusqu'à 6 mois après l'arrêt du traitement ainsi que des tests de grossesse sont nécessaires.
30% des patients développent des effets indésirables tels que des arthralgies, une fatigue, une éruption cutanée, une réaction de photosensibilité, des nausées, une alopécie et un prurit. Comme toutes thérapies ciblées, les effets indésirables les plus fréquents sont cutanés. Le vémurafénib peut entraîner chez 18 à 24 % des patients traités des carcinomes épidermoides cutanés. Ils peuvent apparaître même après l'arrêt du traitement. C'est pour cela qu'en plus du bilan pré thérapeutique un bilan dermatologique est fait 4 semaines après l'arrêt du traitement. Le patient est aussi formé pour reconnaître toute lésion suspecte. (105,106)

10% des patients traités présentent une photosensibilité d'intensité légère à sévère. Pour l'éviter le médecin mais aussi le pharmacien doivent insister sur la photoprotection stricte à maintenir jusqu'à 5 jours après l'arrêt du traitement. Le patient doit éviter l'exposition au soleil, porter des vêtements couvrants, appliquer un écran solaire à large spectre anti-UV et un baume pour les lèvres lorsqu'il sort à l'extérieur. Chez 5% des patients prenant le vémurafénib un syndrome main-pied est observé. Au niveau des points d'appui des mains et des pieds des lésions hyperkératosiques inflammatoires se développent. Malgré ses effets indésirables le vémurafénib doit être poursuivi jusqu'à progression de la maladie ou survenu d'une toxicité inacceptable. Même si un carcinome épidermoide cutané apparaît la dose ne doit pas être modifiée. (107)

A ce jour, le vémurafénib constitue dès la première ligne thérapeutique le meilleur traitement pour les patients atteints d'un mélanome non résécable ou métastatique porteurs de la mutation BRAF. En effet le vémurafénib est inefficace voire délétère chez les patients dont le mélanome n'est pas muté sur BRAF. D'autres inhibiteurs de la voie des MAP kinases sont aujourd'hui en étude comme la dabrafenib. (108)

II.3.2.3. Mélanome métastatique disséminé : fotémustine MUPHORAN®

La fotémustine est indiquée dans le traitement du mélanome métastatique disséminé y compris dans les localisations cérébrales. La prise en charge des métastases cérébrales est conditionnée par leur nombre, leur taille, leur localisation,
Le contexte général de la maladie et les comorbidités. La fotémustine est utilisée en première ligne des mélanomes métastatiques cérébraux BRAF et CKIT sauvages. Mais également elle est administrée en deuxième et troisième lignes des mélanomes métastatiques. Cette molécule est un alkylant de la famille des nitroso-urées. Elle est liposoluble donc possède une très bonne diffusion tissulaire avec passage dans le LCR autrement dit elle passe la barrière hémato-encéphalique d'où le fait qu'elle est la molécule de référence dans les métastases cérébrales. (109)

Elle est peu toxique sauf sur la lignée plaquettaire. Chez 45% des patients traités une leucopénie ou thrombopénie dose dépendante, retardée et réversible est observée. Donc une surveillance préalable puis hebdomadaire hématologique, hépatique et rénale est nécessaire. 50% des patients ont des nausées et vomissements après l'injection de la fotémustine d'où la nécessité d'administrer des antiémétiques avant l'injection. Comme tous nitroso-urées il est néphrotoxique d'où la surveillance rénale.

En monothérapie, le traitement comprend un traitement d'attaque et un traitement d'entretien. Le traitement d'attaque s'effectue à la posologie de 100mg/m²/semaine pendant 3 semaines suivie d'un repos thérapeutique de 4 à 5 semaines. Le traitement d'entretien se fait à la même posologie avec une injection toutes les 3 semaines. (110)

Un essai randomisé a comparé l'efficacité de la fotémustine à celle de la dacarbazine chez 229 patients adultes atteints de mélanome disséminé. Le critère principal évalué était le taux de réponse au traitement. La réponse au traitement était évaluée d'après les critères de l'OMS. Le taux de réponse (complète ou partielle) après traitement avec la fotémustine était de 15,2% contre 6,8% avec la dacarbazine. La médiane de survie, critère secondaire, est de 7,3 mois avec la fotémustine contre 5,6 mois avec la dacarbazine. (111)

Pour conclure, il n'y a pas de traitement curatif du mélanome de stade IV. Le traitement palliatif conventionnel reste la chimiothérapie par la dacarbazine pour toutes les métastases viscérales et osseuses. D'après l'expertise de l'INCa, la fotémustine garde une place majeure dans le traitement du mélanome disséminé.
Quelque soit la chimiothérapie administrée une réponse sera observée dans 18 à 24 % des cas. (112)

II.3.3. L'imunothérapie adjuvante

Le mélanome est une tumeur très immunogène où le rôle de l'immunité est accru. En effet le mélanome est capable de générer une réaction immunitaire chez l'hôte. Des régressions spontanées peuvent être observées même au stade métastatique. Ainsi de nombreuses molécules activatrices du système immunitaire ont été testées ces dernières années.

II.3.3.1. L'interféron alpha

L'imunothérapie adjuvante, par interféron alpha, est une thérapie systémique qui passe par la circulation sanguine pour atteindre toutes les cellules cancéreuses. Sa place est discutée dans le mélanome de stade IIA mais elle reste recommandée pour les stades IIB et IIC. Comme toute immunothérapie, l'interféron alpha va stimuler les défenses immunitaires de l'organisme contre les cellules cancéreuses. L'interféron alpha est une protéine produite par les globules blancs de l'organisme pour lutter contre les infections virales ou les maladies. Ce traitement est dit adjuvant car il complète la chirurgie d'exérèse. Il a pour but de limiter le risque de rechute. La mise sous interféron débute rapidement après l'exérèse. Ceux sont des injections en sous-cutanée ou en intraveineuse pendant 18 mois en moyenne.

Dans les mélanomes de stade II l'interféron alpha2a ROFERON-A® est à faible dose. C'est le seul traitement adjuvant qui prolonge de façon significative la survie sans récidive des patients atteints d'un mélanome de stade II avancé. Les patients dont le mélanome est ulcéré aurait un bénéfice au traitement par interféron. (113, 114, 115) Au stade III le risque de récidive est élevé même après la chirurgie. L'interféron alpha2b INTRONA® est alors utilisé à forte dose. C'est un médicament
soumis à prescription initiale hospitalière annuelle. Son AMM est la suivante : « Traitement adjuvant chez des patients dont la rémission a été obtenue par chirurgie, mais considérés comme à haut risque de rechute systémique, par exemple les patients ayant une atteinte primaire ou secondaire des ganglions lymphatiques ». Son schéma thérapeutique s'accompagne d'une toxicité non négligeable telle qu'un syndrome pseudo grippal, une myalgie, une arthralgie ou une dépression obligeant une surveillance rapprochée du traitement. Après une première injection le flacon multidose et les stylos se conservent au réfrigérateur 27 jours. Le stylo doit être sorti du frigo une demi heure avant l'injection et être remis au réfrigérateur immédiatement. (95, 96, 116, 117)

Une étude a été menée en France sur la faisabilité et la tolérance du traitement adjuvant des mélanomes par immunothérapie selon le protocole de Kirkwood. L'immunothérapie a été proposé à 62% des patients en stade III. Mais le traitement a été mis en place seulement chez 40% des patients. Le refus par le patient fut la première cause de non mise en place du traitement (77%). Dans les 28% des patients où le traitement a été arrêté 60% ont arrêtés pour intolérances clinique et biologique. (118, 119)

L'effet de l'immunothérapie sur la survie sans progression a été montré. Par contre son effet sur la survie globale n'a pas été montré. Par conséquent la mise en place de l'immunothérapie se décide au cas par cas lors des RCP. (120)

II.3.3.2. L'interleukine-2 PROLEUKIN®

L'interleukine-2 est comme l'interféron une substance sécrétée normalement par les cellules. En effet cette cytokine immunomodulatrice est produite par les lymphocytes T. Elle刺激 ensuite les lymphocytes T et les cellules Natural Killer, donc le système immunitaire, afin qu'ils participent à la destruction des cellules cancéreuses. Elle peut être synthétisée par génie génétique. (121)

Avec l'interleukine-2 en monothérapie à forte dose le taux de réponse n'est que de 5%. De plus ses nombreux effets indésirables très fréquents et parfois
sévères limitent son utilisation. Des troubles cardiaques tels que la fibrillation auriculaire ou la tachycardie ventriculaire ont été observés chez 10% des patients. Un syndrome de fuite capillaire a été décrit après perfusion intra-veineuse : une perte de tonus vasculaire, par extravasation des protéines plasmatiques et de liquide dans l'espace extravasculaire. L'hypotension et l'hypoperfusion des organes peuvent être sévères. Les autres effets indésirables fréquents sont : un syndrome pseudo-grippal, des troubles digestifs et une rétention hydrique. Aujourd'hui même si les effets indésirables sont connus et mieux maîtrisés l'interleukine-2 reste associé à un taux de mortalité assez important. Donc elle ne dispose pas en France d'AMM pour le mélanome. (122, 123)

II.3.3.3. L'ipilimumab YERVOY®

Cette nouvelle immunothérapie a obtenu son AMM en 2011 tout comme le vémurafénib. L'ipilimumab est un anticorps monoclonal entièrement humain anti-CTLA4 autrement dit dirigé contre l'antigène 4 des lymphocytes T cytotoxiques. Cet antigène diminue l'activation des lymphocytes T. Ainsi en l'inhibant, l'ipilimumab stimule l'activité anti tumorale des lymphocytes T qui pourront alors proliférer puis attaquer les cellules tumorales. (124)

Une étude randomisée publiée en 2011 a comparé l'ipilimumab et la dacarbazine en traitement de première ligne. Les 502 patients avaient soit un mélanome de stade III inopérable ou un mélanome de stade IV. Le premier groupe de patients a reçu l'ipilimumab et la dacarbazine tandis que le second groupe de patients a reçu un placebo et la dacarbazine. Le taux de réponse n'est que de 15,2% pour la bithérapie ipilimumab et dacarbazine contre 10,3% pour la monothérapie dacarbazine. La survie médiane sans progression est de 11,2 mois pour la bithérapie contre 9,1 mois pour la dacarbazine (cf figure 30). Les taux de survie à 1 an sont de 47,2% et 36,3%; à 3 ans de 20,8% et 12,2%. le nombre d'effets indésirables était plus élevé dans le groupe avec la bithérapie : les effets indésirables de grade 3 ou 4 sont apparus chez 56,3% des patients recevant la bithérapie contre 27,5% chez le second groupe. Dans le groupe traité par bithérapie une forte toxicité hépatique est observée chez 20% des patients. Cette étude montre donc un bénéfice de la
bithérapie ipilimumab dacarbazine par rapport à la monothérapie dacarbazine en terme de survie globale chez les patients atteints de mélanome métastatique en première ligne de traitement. Malheureusement cette bithérapie entraîne une toxicité hépatique non négligeable. (125)

![Figure 30 : Survie des patients en fonction du traitement par ipilimumab-dacarbazine ou par placebo dacarbazine. (125)](image)

L'ipilimumab est indiqué dans les mélanomes non résécables ou métastatiques chez les patients adultes ayant déjà reçu un traitement en première ligne. (124)

L'administration de l'ipilimumab se fait en perfusion lente d’1h30 à la posologie de 3mg/kg toutes les 3 semaines avec un total de quatre cures. Avant de débuter le traitement et avant chaque cure, les fonctions thyroïdiennes et hépatiques sont évaluées. Tous signes immunologiques tels que la diarrhée ou la colite doivent faire l'objet d'une surveillance particulière. (124, 126)

Du fait du mode d'action de la molécule la principale toxicité est immunologique. Ses effets indésirables « auto-immuns » peuvent toucher la peau, le tube digestif, le système endocrinien, l’œil, le rein, le foie ou le système neurologique. Les toxicités digestives, apparaissant vers la 8ème semaine après le début du traitement, peuvent entraîner le décès par perforations gastro-intestinales. Si les diarrhées ou les colites durent plus de cinq jours le traitement sera suspendu et une corticothérapie sera mise en place. (126, 127)
La toxicité hépatique se traduit par une élévation des transaminases et de la bilirubine. Cette toxicité peut aller jusqu’à l’insuffisance hépatique mortelle dans moins d’1% des patients traités. Les troubles de la fonction hépatique apparaissent à partir de la 3ème semaine. (125, 126,128)

Chez plus de 40% des patients traités une toxicité cutanée est observée avec des éruptions maculopapuleuses diffuses associées ou non à un prurit, une dépigmentation ou une pelade. Les patients sont formés à la reconnaissance de ces signes dermatologiques car si la toxicité atteint le grade 3 ou 4 le traitement est arrêté. (106)

La toxicité neurologique se traduit par des neuropathies motrices ou sensitives, une faiblesse musculaire. La toxicité endocrinienne se manifeste quant à elle par des migraines, une asthénie, une altération visuelle ou des troubles du comportement. (126,127)

II.3.4. La radiothérapie

La radiothérapie n'a pas montré de bénéfice dans les études contrôlées et randomisées. En effet la tumeur est peu radio-sensible. Ainsi la radiothérapie reste une option thérapeutique palliative quand la tumeur s'est développée hors du ganglion pour contenir son expansion. La radiothérapie peut aussi être utilisée en association avec une chimiothérapie dans les métastases cérébrales. Elle est aussi recommandée à titre palliatif dans les tumeurs osseuses. Son objectif est de réduire la taille de la tumeur lorsque celle-ci est dans un organe où la chirurgie ne peut accéder ou est trop risquée. Elle va ainsi être utilisée pour diminuer les symptômes indésirables du cancer dans le cerveau ou les os. (129)
Le mélanome ne peut pas être dépisté au sens strict puisqu'il ne peut pas être identifié avant l'apparition des symptômes. Sa détection précoce est capitale car détecté tôt, il peut la plupart du temps être guéri. Malheureusement en cas de diagnostic tardif, les chances de guérison diminuent considérablement car le mélanome métastase rapidement et les traitements existants sont alors peu efficaces. Donc la détection précoce, c'est-à-dire celle des mélanomes in-situ ou d'indice de Breslow < 1mm, reste le principal moyen disponible aujourd'hui pour lutter contre le mélanome. Pour parfaire une stratégie diagnostique, des étapes clés sont nécessaires avec en autres l'auto-examen. De plus, l'efficacité de cette stratégie diagnostique est influencée par des facteurs comme le délai diagnostic et la géolocalisation des dermatologues. Enfin des moyens peuvent être mis en œuvre pour améliorer le diagnostic précoce. (130)

III.1. Les étapes clés du diagnostic précoce

III.1.1. L'intérêt du diagnostic précoce

Comme la plupart des cancers, plus le diagnostic est posé tôt, moins les traitements sont lourds et meilleurs sont les chances de guérison. Par exemple un patient avec un mélanome de stade 0 subit seulement une exérèse à visée thérapeutique et son taux de survie à 10 ans sera de 99%. À contrario, la survie à 5 ans d'une personne atteinte d'un mélanome à un stade avancé avec des métastases est inférieure à 20% et ce malgré les nouveaux traitements. Les deux moyens d'agir pour permettre le diagnostic précoce sont le dépistage lorsqu'il existe, c'est-à-dire
pratiquer des examens de surveillance avant que les symptômes n'apparaissent, et l'identification des signes d'alerte dès leur apparition. (131, 132)

Le mélanome est l'un des rares cancers qui soit visible à l'œil nu. Cette visibilité constitue une opportunité de diagnostic à un stade précoce. Certains signes, tels que des taches sur la peau, sont faciles à repérer et doivent encourager à consulter, en particulier les personnes à risques.

III.1.2. Les populations ciblées par le diagnostic précoce

Les facteurs de risque du mélanome sont connus. Tout d'abord ils sont liés à l'environnement et au comportement : l'exposition excessive ou répétée aux rayonnements ultraviolets, naturels ou artificiels, est le principal responsable du mélanome. Certains caractères physiques tels que la couleur de peau ou des cheveux ou le phototype de peau rendent plus sensibles à l'effet des rayons ultraviolets. L'autre facteur de risque de mélanome est le patrimoine génétique. En effet, dans 10% des mélanomes une prédisposition familiale est retrouvée. Cette dernière se définit par le fait qu'au moins deux personnes dans une même famille sont atteintes. (134, 135)

Les sujets sont considérés à risque de mélanome en raison des caractéristiques génétiques ou phototypiques identifiées comme facteurs de risque dans les méta-analyses de Gandini et al. Ainsi, les personnes les plus à risque de développer un mélanome et donc qui doivent consulter sont les suivants :

- antécédents de coups de soleil quelque soit l'âge auquel ils sont survenus
- phototype I ou II (peau ou yeux clairs, cheveux roux ou blonds, faible capacité à bronzer)
- éphélides nombreuses c'est-à-dire taches de rousseur
- nombreux nævus c'est-à-dire plus de 40 nævus
- plus de 2 nævus atypiques
- nævus congénital géant (diamètre > 20cm)
- antécédents personnels ou familiaux de mélanome
- exposition chronique au soleil : métier ou activité en extérieur, région ou pays
III.1.3. Le mode d'emploi du diagnostic précoce

Le diagnostic précoce consiste à repérer une tache ou un grain de beauté pouvant faire suspecter un cancer de la peau. Il peut être fait soit par la personne elle-même, par un médecin au cours d'un examen pour une autre raison ou par un dermatologue lors d'une consultation de dépistage ou de surveillance.

- **Pour les personnes à risque**

Pour les personnes présentant un ou plusieurs facteurs de risque de mélanome il faut les inciter à aller consulter. Dans un premier temps, le dermatologue fera un entretien pour confirmer le risque de développer un mélanome. Si ce risque est confirmé, le patient devra consulter un dermatologue tous les six mois pour un examen complet de sa peau. (138)

- **L’auto-examen**

L’auto-examen, qui se fait tous les 3 mois, est un examen de la totalité du revêtement cutané pratiqué par le patient. Il permet au patient de se familiariser avec sa peau et ses grains de beauté. Il implique qu’une explication claire sur les lésions à rechercher ait été donnée au patient par son dermatologue. Ainsi l’auto-examen permet de repérer toute lésion et évolution suspectes le plus rapidement possible. Il se fait dans une pièce bien éclairée, debout et complètement nu face à un miroir. Le plus simple est de faire l’auto-examen de la tête aux pieds. (138, 139,140)

- Examiner le visage, en particulier le nez, la bouche et les oreilles devant et derrière.
- Inspecter attentivement le cuir chevelu avec un sèche-cheveux et un miroir afin d’accéder à toutes les zones à regarder.
- Regarder attentivement les paumes et les dos des mains, entre les doigts et sous
les ongles. Inspecter les poignets puis devant et derrière les avant-bras.

- Debout devant le miroir en commençant par les épaules regarder les bras sans oublier les aisselles.
- Observer le cou, la poitrine, le torse.
- A l'aide d'un second miroir, inspecter le dos, les épaules, derrière les bras, le bas du dos, les fesses et derrière les jambes.
- Une fois assis, vérifier l'avant des membres inférieurs, des cuisses et des tibias, chevilles, haut des pieds, entre les orteils et sous les ongles. Examiner les plantes des pieds et les talons.

Le premier objectif de l'auto-examen est de rechercher un grain de beauté qui s'est modifié, en quelques semaines ou quelques mois, dans sa forme, sa taille, sa couleur ou son épaisseur. En effet, dans 20% des cas de mélanome c'est un nævus qui dégénère. Le second objectif de l'auto-examen est de détecter toute nouvelle tache foncée dans un territoire de peau où il n'existait rien auparavant. L'apparition d'un nodule noir, ferme, arrondi, de croissance rapide (quelques semaines), ulcéré, crûteux ou suintant doit aussi alerter. En effet, dans 80% des cas le mélanome apparaît spontanément sur une peau saine. Le troisième objectif est de déceler toute tache ayant un aspect différent des autres grains de beauté c'est-à-dire le « vilain petit canard ». Pour pouvoir effectuer ces trois objectifs le patient doit connaître parfaitement la règle ABCDE. De plus, l'auto-examen nécessite une motivation de la part du patient qui va consacrer une dizaine de minutes par trimestre à examiner sa peau. (135)

Les recommandations écossaises, australiennes, américaines et néo-zélandaises recommandent l'auto-examen aussi bien de la population générale que des personnes à risque. (142, 143, 144)

En France l'auto-examen est recommandé par les Standards, options et recommandations français concernant le mélanome cutané en prévention secondaire dans la surveillance d'un patient à risque. (145)

La principale difficulté associée à l'auto-examen est la mémoire visuelle des
lésions entre deux auto-examens. Deux études ont montré que l'efficacité de l'auto-examen est dépendante de l'éducation du patient et du message délivré par le dermatologue. Le facteur le plus influençant était d'avoir eu un examen dermatologique par un médecin dans les trois années précédentes. Une étude canadienne a inclu 103 sujets qui devaient identifier, avec une encre de couleur, parmi leurs nævus pigmentés localisés dans leur dos, celui dont le diamètre avait augmenté (de 2 mm ou de 4 mm). 75% des sujets étaient capable d'identifier une augmentation de diamètre de 4 mm. 58% des sujets pouvaient déceler une augmentation de diamètre de 2 mm. Par contre 38% des sujets identifiaient une augmentation de diamètre sur des nævus qui en réalité n'avaient pas évolué. Ainsi cette étude canadienne a montré que l'auto-examen était peu pertinent pour identifier un changement de diamètre d'une lésion préexistante. (146, 147)

— *Le patient consulte en cas de doute*

Dès que le patient suspecte une lésion il doit aller consulter son médecin traitant ou son dermatologue. Si le médecin détecte des signes évocateurs d'un mélanome, avec la règle ABCDE, il adresse son patient en urgence à un dermatologue. (138)

III.1.4. Les acteurs clés du diagnostic précoce

Les étapes clés du diagnostic précoce se fondent sur la complémentarité des actions engagées par le patient, le médecin-traitant, le dermatologue et le pharmacien.

— *Le rôle du patient*

Le patient consulte son médecin soit parce qu'il a constaté l'apparition d'une lésion suspecte soit parce qu'il s'identifie comme un sujet à risque. En effet, le patient doit consulter s'il présente au moins un facteur de risque comme vu précédemment. Dans une étude réalisée chez 97 patients traités pour mélanome, les caractéristiques ayant alerté le patient ou son entourage étaient : une modification récente de taille
dans 37% des cas, une couleur inhomogène dans 26% des cas et un diamètre supérieur à 5 mm dans 23% des cas. (148)

– **Le rôle du médecin généraliste**

Le médecin généraliste intervient à deux niveaux dans la détection précoce des mélanomes : il identifie les patients à risque et les incite à consulter un dermatologue en cas d'apparition d'une lésion suspecte ou de changement d'une lésion préexistante. Pour standardiser cette procédure d'identification des sujets à risque de mélanome et de faciliter la pratique du généraliste, un questionnaire à faire remplir soit par le patient soit par le médecin pourrait être un outil pertinent. Cette idée fut proposée par la HAS dans son rapport « stratégie de diagnostic précoce du mélanome ».

Le second rôle du médecin généraliste est d'identifier toute lésion suspecte. Pour se faire, il utilise les trois critères décrits dans l'auto-examen et comme le patient lui-même il utilise la règle ABCDE. En cas de détection de lésion suspecte le médecin généraliste adressera en urgence son patient au dermatologue pour un avis spécialisé. Pour le médecin généraliste, il n'est pas facile de différencier un grain de beauté bénin d'une lésion suspecte. Pour se faire, il peut se poser les questions suivantes :

- La lésion est-elle récente ? Toute lésion récente supérieure à 6 mm ou évolutive est suspecte de malignité; mais une lésion ancienne n'est pas forcément bénigne.
- La lésion s'est-elle modifiée récemment dans sa forme, sa couleur ou son diamètre c'est-à-dire est-elle devenu asymétrique, inhomogène, supérieure à 6 mm ? Toute lésion d'évolution récente est suspecte de malignité.
- La lésion a-elle une croissance rapide, en quelques semaines ? Est-elle ferme et nodulaire, ulcérée, croûteuse ou suintante ?

Ces questions permettent au médecin généraliste de s'appuyer sur la règle ABCDE pour établir sa suspicion diagnostique. Une lésion mélanocytaire est considérée comme suspecte si le patient répond oui à deux de ces questions. Autrement dit si deux des trois critères sont validés le médecin généraliste demande systématiquement et sans délai au dermatologue une confirmation diagnostique. (138)
Le rôle du dermatologue

L'autre rôle du dermatologue est de suivre les patients à risque de mélanome, de les former à l'auto-examen et à l'identification d'une lésion suspecte.

Le rôle du pharmacien

Le pharmacien se doit d'encourager ses patients à consulter son médecin devant toute lésion suspecte. Il doit insister sur l'importance de l'auto-examen régulier notamment au près des personnes à risque.

III.2. Les facteurs influençant l'efficacité de la stratégie diagnostique

III.2.1. Les facteurs à prendre en considération

Deux problématiques peuvent être envisagées pour comprendre l'efficacité de la stratégie diagnostique. La première problématique envisagée est la suivante : un retard au diagnostic est lié à l'absence d'identification par le patient ou le médecin généraliste d'une lésion suspecte. Pour éviter cette problématique trois solutions peuvent être envisagées :

- encourager la population générale à consulter son médecin devant toute lésion suspecte
- inciter les personnes à risque à pratiquer régulièrement et sérieusement leur auto-examen
perfectionner la formation des médecin généraliste à la détection des personnes à risque, à la sémiologie des mélanomes et à l'enseignement de l'auto-examen.

La seconde problématique est le surdiagnostic de lésions suspectées d'être un mélanome et ainsi l'exérèse de lésions bénignes c'est-à-dire des faux positifs. Le fait de traiter une lésion suspectée à tort d'être cancéreuse peut avoir un impact physique et un impact psychique sur le patient. L'impact physique est lié à la cicatrice d'exérèse et aux possibles problèmes de cicatrisation. L'impact psychologique, comme l'anxiété par exemple, peut aboutir à un manque d'adhésion à la stratégie diagnostique.

III.2.2. Le délai diagnostique

- Le délai diagnostique et l'épaisseur du mélanome

L'étude de Richard et al. a étudié la corrélation entre l'épaisseur de la lésion et le délai diagnostique. Elle s'est déroulée dans 19 services français de dermatologie pendant 1 an avec 590 patients. 172 patients avaient découverts leur mélanome au cours d'un examen clinique de leur médecin tandis que les 418 autres patients avaient constatés leur lésion eux-mêmes. Le mélanome détecté était chez 69,8% des patients un mélanome à extension superficielle, un mélanome nodulaire (18,1%), un mélanome acral-lentigineux (4,1%) et un mélanome de Dubreuilh (3,6%). L'indice de Breslow médian des mélanomes détectés était de 1,19 mm. Dans 56,9% des cas il était inférieur à 1 mm. (149)

L'étude a aussi conclu que l'indice de Breslow au moment de l'exérèse est d'avantage corrélé à la cinétique de croissance du mélanome qu'au cumul des retards au diagnostic liés au patient et/ou au médecin. (150)

- Le rôle des patients dans le délai diagnostique

Dans l'étude de Richard et al. sur les 590 patients, 495 d'entre eux ont décelé une lésion mélanocytaire dans la zone cutanée où le mélanome a été diagnostiqué. Dans 86% des cas cette découverte a été le fait du patient et dans 14% des cas de
son entourage.

Le délai entre l'identification de la lésion suspecte et la consultation chez le médecin était inférieure à 2 mois dans 52% des cas et supérieure à 2 mois dans 48% des cas. Les causes qui ont retardé la consultation étaient : l'absence de signes généraux, la non évolution de la lésion, le manque de temps, l'absence de douleur, la méconnaissance de l'urgence et la négligence.

Le délai entre la consultation et l'exérèse était inférieure à 1 mois dans 88% des cas et supérieure à 1 mois dans 12% des cas. Ce dernier pourcentage peut s'expliquer par la négligence, un manque de motivation, le manque de temps, la peur du résultat et une mauvaise information du médecin. (151)

– Le rôle du médecin généraliste dans le délai diagnostique

Sur les 590 mélanomes détectés pendant l'étude de Richard et al. 29% ont été découverts pendant une consultation chez le médecin. 51% de ces mélanomes ont été détectés au cours d'une consultation sans rapport avec la peau, 12% au cours d'un examen systématique, 10% pendant une consultation pour un autre problème de peau et 27% dans une autre situation. Le délai médian pour effectuer l'exérèse était de 7 jours. Les mélanomes localisés sur des parties difficiles à voir n'étaient pas toujours détectés. Les mélanomes au niveau des extrémités ou sans pigmentation avaient un délai diagnostique plus long et une prise en charge médicale souvent inappropriée.

L'étude de Richard et al. a comparé les prises en charge par un médecin et par un dermatologue. Si le patient consultait un dermatologue le délai médian pour pratiquer l'exérèse était plus court, la décision médicale était plus appropriée, l'épaisseur des mélanomes identifiés plus faible. Cette étude a ainsi prouvé que le principal facteur influençant le délai diagnostique est la différence d'expérience entre les praticiens en ce qui concerne la sémiologie clinique des mélanomes. (152)

Les médecins généralistes déclarent avoir une connaissance globalement suffisante à propos de la prévention et de la détection précoce des cancers de la peau. Mais ils estiment que leurs connaissances peuvent être améliorées et sont demandeurs d'une formation complémentaire sur le sujet. Plusieurs observations ont été faites. Les médecins généralistes orientent quasi systématiquement leur patient
chez le dermatologue lors de détection de lésion suspecte. La mise en place d'un parcours de soins n'a pas modifié leur pratique et selon eux il ne retarde pas le délai diagnostique. Les médecins généralistes avouent ne pas déshabiller systématiquement complètement leur patient pour examiner leur tégument notamment si c'est une consultation pour un problème non dermatologique. Ils connaissent les critères d'identification d'une lésion suspecte, autrement dit la règle ABCDE, mais ne savent pas hiérarchiser ces critères. Ils confessent ne pas maîtriser tous les facteurs de risque et ainsi ne pas être capables d'identifier tous les patients à risque de mélanome.

Suite à ces enquêtes la HAS préconise de renforcer la formation des médecins au diagnostic précoce, à la sémiologie des mélanomes et à l'identification des patients à risque. (27)

- Le rôle du dermatologue dans le délai diagnostique

Chaque dermatologue a une compétence dans le diagnostic du mélanome qui lui est propre. Cette compétence dépend de sa formation spécifique et de son expérience pratique. De plus, même si tous les dermatologues disposent d'un dermatoscope, la formation à la sémiologie des images dermatoscopiques de mélanome qui permet d'augmenter la performance diagnostique est variable d'un dermatologue à l'autre.

Le Syndicat National des Dermatologues-Vénérologues (SNDV) a piloté une enquête auprès des dermatologues. Ces derniers ont déclarés être capable de recevoir dans un délai de moins de trois semaines tout patient avec une lésion suspecte.

Deux problématiques pouvant limiter l'accès au dermatologue doivent être prises en compte : les disparités démographiques des dermatologues et les dépassements d'honoraires pouvant freiner l'accès à la consultation. (150)
III.2.3. L'impact de l'offre sur la demande

- La densité des dermatologues en fonction de la région

Selon la Direction de la recherche, des études, de l'évaluation et des statistiques (Dress) la densité des dermatologues-vénérologues en exercice en France varie d'un département à l'autre. La densité des dermatologues-vénérologues, c'est-à-dire le nombre de médecin pour 100 000 habitants, était en 2010 inférieure de plus de 20% à la moyenne nationale en Picardie, Haute et Basse-Normandie, Lorraine, Champagne-Ardenne, Nord-Pas-De-Calais. Par contre cette densité de dermatologues-vénérologues était supérieure de 20% à la moyenne nationale dans les régions Ile-de-France et PACA (cf figure 31).

Figure 31 : Densité pour 100 000 habitants des dermatologue-vénérologues en 2010 en France et DOM. (153)

Selon la Dress, au 1er janvier 2014 il y avait 4076 dermatologues-vénérologues en France et la densité était de 6 dermatologues-vénérologues pour 100 000 habitants. (150)

- L'impact potentiel de la démographie médicale sur l'accès au dermatologue

Pour améliorer la stratégie de diagnostic précoce du mélanome, l'impact de la démographie des dermatologues et la mise en place du parcours de soins
Coordonné qui place le médecin généraliste comme médecin de premier recours doivent être pris en compte. La répartition démographique des dermatologues influence l'accès direct à ces derniers. En effet dans certaines régions les dermatologues étant plus nombreux et ainsi plus accessibles, les patients peuvent plus facilement en consulter un. La localisation démographique des médecins généralistes et le système de soins français peuvent expliquer le fait que les médecins généralistes ont tendance à voir d'avantage de patients de plus de 60 ans que les dermatologues. Or le pic d'incidence du mélanome se situe entre 50 et 64 ans. Donc ils sont amenés à identifier plus fréquemment un mélanome chez les plus de 60 ans que leurs confrères dermatologues. Pour les patients de plus de 60 ans les médecins généralistes ont gardé leur place de médecin de famille et de ce fait les personnes âgées iront plus facilement prendre un avis chez eux que chez un spécialiste. De plus, les personnes âgées ayant plus de comorbidités ils sont davantage suivies par leur médecin généraliste que les jeunes. (150)

III.3. Les moyens à mettre en œuvre pour améliorer le diagnostic précoce

III.3.1. La formation des professionnels de santé

Le médecin est essentiel dans le diagnostic précoce du mélanome puisqu'il est en première ligne pour informer ses patients. Il éduque ses patients sur la prévention et l'identification du mélanome. Mais cette éducation des patients ne suffit pas à améliorer le diagnostic précoce. En effet, le médecin pratiquant l'examen physique de la peau doit avoir une bonne connaissance de la sémiologie des mélanomes. De nombreuses études ont montré que la performance de l'examen clinique augmente avec la formation et l'expérience du praticien.

La HAS préconisait en 2006 la formation des médecins généralistes et des médecins du travail au diagnostic précoce et à la sémiologie des mélanomes et à l'identification des patients à risque. L'E-Learning est un apprentissage interactif sur internet, auquel chaque médecin peut accéder. C'est une alternative aux réunions de
Formation Médicale Continue qui permet une plus grande souplesse en termes d'horaire. L'INCa a elle mis en place en 2010 un module de formation multimédia de détection précoce des cancers de la peau à destination des professionnels de santé. La HAS propose aussi l'envoi, aux médecins généralistes, de fiches de recommandations synthétiques pour les sensibiliser aux facteurs de risque du mélanome et à son diagnostic précoce. (150)

Entre 1985 et 1989 des campagnes d'information auprès des médecins généralistes, des chirurgiens et des dermatologues sur les signes cliniques du mélanome ont été organisées en région PACA. Pour accentuer l'impact de ces campagnes une action de sensibilisation et d'information de la population sur les cancers cutanés fut diffusée par les médias. Pendant les six mois qui ont suivi la campagne le nombre de mélanomes diagnostiqués a augmenté : + 126% en 1 mois, + 108% en 3 mois et + 47,6% en 6 mois. Au-delà de 6 mois, le nombre de mélanomes identifiés revenait à la même valeur qu'avant la campagne. (154)

III.3.2. L'incitation au diagnostique précoce

Depuis 1998, une campagne annuelle de sensibilisation de la population aux cancers cutanés et d'incitation au diagnostic précoce est organisée en France par le SNDV. Les sept campagnes réalisées de 1998 à 2004 ont montrées que le nombre de mélanomes identifiés variait entre 0,81 et 2,15 pour 1000 sujets volontaires. La valeur moyenne de l'indice de Breslow était stable et estimée à 0,78 mm. (155, 156)

Un essai randomisé australien montre que le nombre de sujet ayant recours à un médecin pour identifier une lésion mélanocytaire suspecte est supérieur dans la population ayant reçu une éducation au diagnostique précoce du mélanome : 21% versus 11%. Cependant l'impact de ces campagnes reste limité dans le temps. (157)

- Le coût et l'efficacité des campagnes de diagnostic précoce

Des études économiques ont été faites pour permettre l'évaluation économique des campagnes de diagnostic précoce. L'étude de Freedberg et al.,
effectuée en 1999 aux États-Unis, a conclu que la campagne de diagnostic précoce permettait un gain de 0,9 année de vie pour chaque sujet diagnostiqué. Le coût annuel de la campagne et de la prise en charge d'un mélanome était estimé à 733 euros par sujet versus 703 euros en l'absence de campagne. Ainsi le ratio coût efficacité de la campagne de diagnostic précoce était estimée à 24 851 euros par année de vie sauvée. (158)

L’étude de Beddingfield, réalisée en 2002 aux États-Unis, a conclu que la campagne de diagnostic précoce permettait un gain de 87 années de vies sauvées pour 100 000 sujets. Le coût total était de 60 euros par sujet dépisté versus 28 euros en l'absence de programme de campagne. Le coût par année de vie gagnée par rapport à l'absence de campagne était de 43 957 euros. Cette étude a surtout remarqué que la sélection de la population cible par l'âge ou le sexe permettait d'améliorer ce ratio coût/efficacité. Si la campagne avait lieu sur une population de femmes âgées de plus de 50 ans le coût par année de vie gagnée était de 26 314 euros. Il descendait même à 16 105 euros si la campagne avait lieu sur une population d'hommes âgées de plus de 50 ans. (159)

Les deux études ont montré que le ratio coût/efficacité décroissaient avec l'augmentation de la prévalence.

III.3.3. Les réseaux mélanomes

Des réseaux régionaux ou interrégionaux de cancérologie sont répartis sur l'ensemble du territoire français. Les objectifs prioritaires de ces réseaux sont les suivants :

- Assurer la prise en charge globale du patient en développant des soins de proximité pour favoriser sa qualité de vie.
- Garantir la qualité des soins et le suivi continu du patient par le partage des informations et la formation continue des professionnels de santé.
- Proposer des protocoles de traitement toujours évalués et actualisés sur la base d'un consensus national et européen.
- Diminuer le coût global de la prise en charge en réduisant le nombre
d’hospitalisation et en promouvant une gestion de proximité.

• Renforcer les actions d’éducation, de formation et de sensibilisation pour améliorer la prévention primaire et encourager le diagnostic précoce.

• Apporter une aide sociale et un soutien psychologique au patient et à son entourage par des intervenants pluridisciplinaires.

III.3.4. Le Plan Cancer III 2014-2019

Le troisième Plan Cancer, lancé le 4 février 2014 par le président de la République, a pour objectif de donner à chacun, partout en France, les mêmes chances de guérir et de mettre plus rapidement encore les innovations au service des malades. La priorité de ce troisième Plan Cancer va à la prévention et au dépistage pour éviter de nouveaux cas de cancer. Concernant le mélanome, ce nouveau Plan Cancer souligne le facteur de risque majeur que représente la surexposition aux UV dans le développement des cancers de la peau et en particulier du mélanome cutané. Il insiste sur l’incidence très forte qu’a connu le mélanome ces trente dernières années.

L’une des actions phares de ce Plan Cancer est l’expérimentation de la télédématologie dans la détection précoce des cancers de la peau. En 2013, une opération de télédématologie a été mise en place pour répondre au problème des déserts médicaux. Cette opération est renouvelée cette année et élargie à un public à risque : les travailleurs du BTP. Les médecins des centres de télédématologie, qui ont été au préalable formés par des dermatologues, prendront des photographies de lésions suspectes et les enverront aux experts dermatologues. Ces derniers, réunis sur une plate-forme technique, feront une analyse en temps réel, donneront leur avis et si nécessaire dirigeront le patient vers un dermatologue.
En trente ans, le risque de développer un cancer cutané a été multiplié par trois d'où l'importance pour les professionnels de santé et notamment les pharmaciens d'officine de sensibiliser et d'informer le public sur les risques liés à l'exposition solaire. Nous allons tout d'abord étudier le comportement de la peau face aux rayonnements ultraviolets. Dans un second temps, les produits solaires seront développés. Puis nous détaillerons les différents conseils que nous pouvons communiquer à nos patients à l'officine pour promouvoir la protection solaire. Enfin nous exposerons les différents moyens mis en place pour promouvoir l'éducation à l'exposition solaire.

Avant de détailler les effets délétères du soleil sur notre peau, rappelons ses effets bénéfiques. Les UVB permettent la synthèse de vitamine D pour lutter contre le rachitisme et la décalcification. En effet l'exposition des bras et de la tête pendant 10 minutes suffisent à apporter la dose quotidienne nécessaire de vitamine D.(161) Le soleil est aussi bon pour le moral. Dans certains pays nordiques le risque de dépression est dû à la diminution de l'intensité et de la durée de la lumière solaire pendant la période hivernale. En l'absence de stimulation lumineuse la mélatonine, « l'hormone du sommeil », n'est plus inhibée et donc davantage libérée.(162) De plus, les ultraviolets améliorent le tableau clinique de certaines maladies dermatologiques comme le psoriasis. La PUVAthérapie qui consiste en l'irradiation du corps par des UVA après la prise d'un psoralène, médicament photosensibilisant, est utilisé pour traiter le psoriasis et le vitiligo. (163)

IV.1.La peau face aux rayonnements ultraviolets

Durant de nombreux siècles, la peau bronzée était considérée comme réservée aux classes sociales inférieures. Cette tendance s'inverse au XIXème siècle, avec le développement des congés payés et la découverte des bienfaits du soleil sur
la synthèse de la vitamine D. La peau bronzée devient synonyme d'une certaine aissance sociale et un signe de bonne santé physique et psychique. Même si le soleil est indispensable à notre vie, les rayonnements solaires peuvent être néfastes aussi bien à court terme qu'à long terme.

IV.1.1. **Les rayonnements ultraviolets**

IV.1.1.1. Le spectre solaire

La peau en contact direct avec l'extérieur subit nombre d'agressions contre lesquelles elle n'est pas toujours préparée. En effet même si elle est recouverte d'un film hydrolipidique qui la protège, elle n'a cependant pas la capacité de résister à toutes les agressions, au premier rang d'entre elles, en ces temps de civilisation de loisirs : le soleil. Gigantesque émetteur d'ondes électromagnétiques, indispensables à notre survie sur la Terre, le soleil émet des rayonnements nocifs pour la peau : les ultraviolets et accessoirement les infrarouges. L'ensemble des radiations électromagnétiques émises par le soleil forme le spectre solaire. En effet, le soleil émet dans un large spectre de longueur d'onde allant des rayons cosmiques aux grandes ondes radioélectriques en passant par les rayons gamma, les rayons X, le rayonnement visible, le rayonnement infrarouge et le rayonnement ultraviolet. Chaque radiation est caractérisée par sa longueur d'onde, sa fréquence et son énergie.

En 1801, Johann Ritter a découvert la région ultraviolette du spectre solaire. Cette partie du spectre correspond au rayonnement ultraviolet. Il est subdivisé en trois groupes en fonction de la longueur d'onde : UVC de 100 à 280 nm, UVB de 280 à 315 nm et UVA de 315 à 400 nm. Seuls les UVA et les UVB sont compatibles avec la vie donc passent la couche d'ozone. En effet la couche d'ozone retient les rayonnements dangereux tels que les rayons gamma, les rayons X, les rayons cosmiques et les UVC (cf figure 32). Près de 5% de l'énergie du soleil est émise sous forme de rayonnement UV.

Bien qu'une grande partie des rayonnements UV émis par le soleil soit absorbée par la couche d'ozone ou réfléchie vers l'espace, une partie de cette
lumière UV parvient jusqu'à la surface de la Terre. Il s'agit principalement d'UVA (95 %) et d'une faible proportion d'UVB (5 %). (165)

IV.1.1.2. Les rayons UVA

La quantité d'énergie émise est inversement proportionnelle à la longueur d'onde ainsi les UVA sont les rayons les moins énergétiques. Par contre la pénétration des UV augmente avec la longueur d'onde ce qui fait des UVA les ultraviolets les plus pénétrants. La majorité des UVA traverse la couche cornée : 80% atteint l'épiderme et 20% atteint le derme (cf figure 33). Les UVA, aussi appelés en anglais « aging ray » (rayons vieillissants) pénètrent plus profondément dans la peau que les UVB. L'énergie des UVA est constante dans la journée donc ils sont dangereux tout au long de la journée. (166, 167)

IV.1.1.3. Les rayons UVB

Les UVB sont arrêtés à 70% par la couche cornée par absorption et restitution de chaleur. Ainsi 20% des UVB atteignent l'épiderme et 10% atteignent le derme profond (cf figure 33). Contrairement aux UVA leur énergie est maximale quand le soleil est au zénith c'est-à-dire entre 12h et 16h. De plus, un certains nombre de facteurs peuvent influer sur les niveaux d'UVB : les saisons avec une intensité plus
élevée pendant l'été, l'altitude avec une intensité plus élevée à haute altitude, la
proximité de l'équateur avec une intensité maximale à proximité de l'équateur. Les
surfaces réfléchissantes comme le sable, l'eau ou la neige augmente l'exposition aux
UVB. (169)

Figure 33 : Pénétration du rayonnement solaire dans la peau en fonction de la
longueur d'onde, chez un sujet blanc. (168)

IV.1.2. La photoprotection naturelle

Notre peau possède des moyens de défense contre les effets toxiques des
UV. En effet, les barrières naturelles au niveau de la peau permettent à l'Homme de
se protéger des effets délétères du soleil.

IV.1.2.1. Épaississement de la couche cornée

La couche cornée joue un rôle de réflexion, de diffusion et d'absorption des
rayons incidents. Par ces trois mécanismes la couche cornée est photoprotectrice.
(170)

Cette photoprotection s'observe après une irradiation par les UVB. En effet,
one augmentation du nombre et de l'épaisseur des différentes couches de
kératinocytes de l'épiderme et de ce fait un épaississement de la couche cornée s'observent. Cet épaississement de la couche cornée de l'épiderme, hyperkératose, est bénéfique puisqu'il augmente la protection. En effet, une épaisseur de 0,9 mm de kératine arrête les UV. L'hyperkératose résulte de l'action des UV qui accélère la différenciation des kératinocytes. Après des expositions solaires répétées, les kératinocytes se multiplient, entraînant l'épaississement global de l'épiderme.

IV.1.2.2. La pigmentation

La mélanine joue un rôle important dans la photoprotection. Elle absorbe plus de 90% des UV ayant franchi la couche cornée. Son rôle photoprotecteur est assuré par les trois mécanismes : diffraction, absorption des photons et rôle tampon des radicaux libres. Les radicaux libres sont formés dans les kératinocytes par absorption des photons. Les rayons UVB provoquent la synthèse de mélanine et ainsi la protection de la peau. (171)

Il existe deux types de mélanine : la eumélanine et la phaeomélanine. Dans les cellules la mélanine est répartie au hasard mais lors des expositions solaires la mélanine va migrer lentement pour se placer au-dessus du noyau comme pour le mettre à l'ombre. Malheureusement les deux types de mélanine n'ont pas la même capacité de photoprotection. Les eumélanines assurent le rôle photoprotecteur tandis que les phaeomélanines sont peu protectrices et peuvent générer des espèces réactives de l'oxygène. En effet, l'efficacité de la photoprotection naturelle d'un individu dépend essentiellement de sa couleur de peau et de sa capacité à développer un bronzage après une exposition solaire. Ces deux paramètres définissent un phototype qui qualifie la photosensibilité individuelle. (172)

La pigmentation mélanique constitutive, autrement dit le phototype, est d'autant plus efficace que l'individu est mat. Les mélanosomes sont gros et captés isolément par les kératinocytes dans les peaux noires tandis que les mélanosomes sont petits et captés sous forme de complexes dans les peaux blanches. (cf figure 34)
<table>
<thead>
<tr>
<th></th>
<th>mélanocytes</th>
<th>Kératinocytes basaux</th>
<th>Kératinocytes superficiels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sujet à peau claire</td>
<td>Mélanosomes à phaeomélanine petits</td>
<td>Petits mélanosomes en paquets</td>
<td>Pas de mélanosomes</td>
</tr>
<tr>
<td>Sujet à peau mate</td>
<td>Mélanosomes à eumélanine gros et nombreux</td>
<td>Gros mélanosomes isolés</td>
<td>Persistance de mélanosomes</td>
</tr>
</tbody>
</table>

Figure 34 : Comparaison de la pigmentation constitutive entre peau claire et peau mate.

La pigmentation mélanique acquise, c'est-à-dire le bronzage, permet une photoprotection facultative. Le bronzage est l'augmentation de la synthèse des eumélanines suivie d'une augmentation du nombre des mélanosomes dans les couches superficielles de l'épiderme. Plus l'exposition est répétée plus le nombre de mélanocytes augmente. La protection par le bronzage varie en fonction du phototype de l'individu, déterminé génétiquement.

IV.1.2.3. La protection anti-radicalaire

Sous l'effet des UVA la production de radicaux libres augmente dans la cellule avec comme conséquence la mort cellulaire par apoptose ou nécrose. Heureusement des systèmes anti-oxydants sont présents dans l'organisme et plus particulièrement dans l'épiderme pour permettre un équilibre entre la production et l'élimination de ces radicaux libres. Des enzymes anti-oxydantes telles que les superoxydes dismutases, les catalases et les peroxydases sont présentes dans l'épiderme. Des piégeurs de radicaux libres comme le tocophérol, l'acide ascorbique, les caroténoïdes augmentent leur activité anti-oxydante après irradiation par des UV pour protéger la peau. Par contre si l'irradiation continue le taux d'antioxydant va diminuer et les radicaux libres seront produits en excès et dégraderont alors le tissu cutané. (173)
IV.1.2.4. L'acide urocanique

L'acide urocanique est issu de la dégradation de l'histidine dans les kératinocytes de la couche cornée. Exposé aux UVB, l'isomère trans de l'acide urocanique est transformé en isomère cis qui est capable d'absorber les UV et d'en dissiper l'énergie nocive. (174)

IV.1.2.5. La pilosité

Les poils et les cheveux arrêtent les rayons solaires. Malheureusement, au cours de l'évolution l'Homme n'a gardé la majorité de son pelage qu'au niveau du cuir chevelu. Ainsi le cuir chevelu qui reçoit directement les rayons solaires peut se protéger.

IV.1.3. Les actions néfastes des rayonnements ultraviolets sur notre peau

Les dangers d'une exposition excessive au soleil sont bien connus et la communauté internationale est formelle : les radiations UV entraînent des effets biologiques immédiats, retardés et à long terme.

IV.1.3.1. Les effets immédiats

- Pigmentation immédiate ou phénomène de Meirowski

La pigmentation immédiate, secondaire à l'action des UVA, se manifeste par un assombrissement de l'épiderme. Ce léger hâle fugace apparaît en quelques minutes et ne dure que quelques heures. Il s'observe surtout chez les personnes à peau naturellement foncée. Ce phénomène de Meirowski résulte d'une accélération du passage des prémélanosomes au stade de mélanosomes matures et d'un
allongement des dendrites mélanocytaires favorisant ainsi le transfert vers les kératinocytes voisins.

- Phototoxicité

La phototoxicité est la conséquence de l’interaction entre une substance présente dans la peau et un rayonnement suffisant. Les molécules phototoxiques peuvent être endogènes ou exogènes comme les médicaments par voies orale ou locale ou comme les plantes. La phototoxicité est un coup de soleil disproportionné qui survient quelques minutes ou quelques heures suivant l’exposition (cf figure 35). Cette réaction qui ne nécessite pas de sensibilisation préalable se traduit par un érythème douloureux parfois bulleux limité à la zone photoexposée. La substance doit être présente en quantité suffisante et la guérison est rapide (jusqu’à 10 jours). (175, 176)

Si c'est un médicament qui a entraîné cette phototoxicité le médecin peut décider de diminuer la posologie ou de prescrire sa prise le soir pour que sa concentration soit plus faible en journée. (177)

IV.1.3.2. Les effets retardés

- Le bronzage

La pigmentation retardée ou bronzage est induite par les UVA et les UVB. Le bronzage est une réaction de défense de la peau. Elle apparaît quelques jours (2 à 3) après l’irradiation. Elle est la conséquence de signaux induits par les UV destinés aux mélanocytes et aux kératinocytes. Cette pigmentation acquise et stable résulte de phénomènes complexes : augmentation de la synthèse de tyrosinase et activation de la cascade enzymatique, accroissement de la mélanogenèse et de la production de mélanosomes, allongement des dendrites mélanocytaires, accélération du transfert des mélanosomes aux kératinocytes et, enfin, augmentation du nombre de mélanocytes. (180)
L'érythème actinique ou « coup de soleil »

L'érythème actinique, provoqué essentiellement par les UVB, fait suite à une exposition au soleil sans précaution. Cette brûlure s'associe à un œdème douloureux et/ou des phlyctènes dans le cas de brûlure de 2ème degré. L'érythème actinique est la conséquence d'une vasodilatation et d'une production de prostaglandines. Ces médiateurs de l'inflammation sont libérés lorsque les vaisseaux dermiques et les kérintocytes sont agressés par les UV entraînant alors une réponse immunitaire inflammatoire. Cette réponse inflammatoire provoque la vasodilatation des vaisseaux et le rougissement de la peau. Après 24h apparaissent des « sunburn cells » pour cellules coup de soleil qui sont des kérintocytes apoptotiques. Puis dans les jours qui suivent l'exposition, une desquamation et une zone pigmentée apparaissent. (178)

La conduite à tenir face à un coup de soleil doit être connu des professionnels de santé. Il faut appliquer la règle des quinze : refroidir la peau 15 min sous l'eau à 15 degrés et à 15 cm de l'érythème. La désinfection de la peau se fait avec un antiseptique non coloré, pour visualiser l'évolution de la brûlure, et non alcoolisé type chlorhexidine. Puis une pommade type OSMOSOFT® (hydratante, apaisante et réductrice de rougeur) peut être appliquée. Si un phlyctène apparaît il faut le protéger de l'air et des salissures et ne surtout pas le percer. La douleur peut être pris en charge par du paracétamol ou de l'ibuprofène. Il faut insister sur l'importance de boire en abondance pour éviter tout risque de déshydratation. (179)

la photoallergie

La photoallergie se déroule selon le schéma d'une réaction d'hypersensibilité. Contrairement à l'autre photosensibilisation qui est la phototoxicité, la photoallergie nécessite un contact préalable avec l'allergène. Elle provoque des manifestations d'allergie type eczéma ou prurit sur des zones dépassants largement les parties découvertes ou exposées. L'apparition des signes cliniques est progressive et leur disparition est lente (jusqu'à 3 semaines). Elle est indépendante de la dose de substance photosensibilisante et très peu de soleil peut suffire à la déclencher (cf
Les produits cosmétiques peuvent contenir des agents photoallergiques comme les filtres solaires (benzophénone, les dérivés de PABA), les parfums avec des furocoumarines ou des huiles essentielles, les colorants de type éosine, fluorescéine.

Pour soulager le prurit des crèmes corticoïdes peuvent être appliquées et si cela ne suffit pas une corticothérapie par voie orale est mise en place. L’éviction de la substance photoallergique est indispensable puisque les manifestations allergiques sont indépendantes de la dose de la substance et indépendantes de l’intensité du rayonnement. (177) Si le médicament est vital pour le patient, une photoprotection efficace est nécessaire et le patient doit éviter de sortir en milieu de journée.

<table>
<thead>
<tr>
<th>Critères</th>
<th>PHOTOTOXICITE</th>
<th>PHOTOALLERGIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence</td>
<td>Élevée</td>
<td>Faible</td>
</tr>
<tr>
<td>Sensibilisation préalable</td>
<td>Non</td>
<td>Oui</td>
</tr>
<tr>
<td>Quantité de photosensibilisant</td>
<td>Grande</td>
<td>Petite</td>
</tr>
<tr>
<td>Début après exposition</td>
<td>Minutes à heures</td>
<td>24h ou plus</td>
</tr>
<tr>
<td>Aspect clinique</td>
<td>Coup de soleil</td>
<td>Eczéma</td>
</tr>
<tr>
<td>Distribution</td>
<td>Zones photo-exposées seulement</td>
<td>Zones photo-exposées, peut diffuser aux zones couvertes</td>
</tr>
<tr>
<td>Évolution à l'arrêt du photosensibilisant</td>
<td>Guérison rapide en 8 à 10 jours</td>
<td>Guérison lente en plusieurs semaines</td>
</tr>
</tbody>
</table>

Figure 35 : Réactions de phototoxique et photoallergique.
IV.1.3.3. Les effets à long terme

- **le vieillissement solaire ou héliodermie**

L'exposition chronique aux UV est en majorité responsable du vieillissement prématuré de la peau. Ce vieillissement extrinsèque aussi appelé vieillissement actinique ou photovieillissement s'ajoute aux signes du vieillissement intrinsèque génétiquement programmé. Le photovieillissement est corrélé à la quantité d'UV reçue pendant la vie et concerne les zones photo-exposées : visage, dos des mains et avant-bras. Les UVB, majoritairement arrêtés dans l'épiderme, altèrent l'ADN mitochondrial et nucléaire induisant alors des tumeurs. Les UVA pénètrent plus profondément dans le derme. Ainsi les UVA altèrent les membranes cellulaires par peroxydation lipidique des radicaux libres. L'exposition chronique à de faibles doses d'UVA, 5 à 15 min d'exposition au soleil le midi, induit la synthèse de métalloprotéinases, collagènases et élastases. Ces enzymes dégradent alors les fibres de collagène et d'élastine du derme et les protéoglycanes du derme. De plus une synthèse par les fibroblastes d'élastine de mauvaise qualité est observée.

Au niveau des zones photoexposées, les dommages photo-induits se caractérisent par une perte de l'élasticité. La peau est épaissie et rèche par l'épaississement de la couche cornée suite à la prolifération des kératinocytes. Une sécheresse cutanée apparaît suivie d'une élastose (perte d'élasticité) actinique due à une quantité importante de fibres d'élastine de mauvaise qualité suivie de l'apparition de la ride. Les petits vaisseaux sont rendus fragiles, ils se dilatent, ce qui provoque des télangiectasies et une plus grande facilité à développer des ecchymoses. Des signes pigmentaires comme des lentigos, dus à la mélanine qui se répartit de manière inhomogène, des éphélides et des dépigmentations peuvent apparaître. Une nuque rhomboïde c'est-à-dire des rides au niveau du cou peuvent être observée chez les personnes travaillant en extérieur. (182)

- **la cataracte**

L'OMS estime que 20% des cataractes dans le monde sont dû à l'exposition solaire donc évitables. La cataracte est la première cause de cécité dans le monde.
Les protéines du cristallin se défont, s’enchevêtrent et accumulent des pigments, obscurcissant le cristallin et entraînant au final la cécité. Comme pour la peau, les effets du soleil sont cumulatifs donc dès le plus jeune âge il faut se protéger les yeux avec des lunettes de soleil enveloppantes munis de verre à la filtration UV garantie.

– les cancers de la peau

Le spectre d’action implique les UVB et les UVA. Le temps de latence entre l’exposition solaire et l’apparition d’un cancer cutané est long. Au fil des années, la peau répare de plus en plus mal les dommages causés par le soleil, surtout après des brûlures. En effet, l’irradiation UVA induit des dommages de l’ADN de type oxydatif entraînant la survenue de mutations et de délétions des oncogènes et des gènes suppresseurs de tumeurs. Les lésions liées aux UVB sont principalement dues à l’action directe sur l’ADN. De plus, cette irradiation entraîne une photo-immunosuppression locale et systémique jouant un rôle majeur dans la survenue des cancers cutanés. Même si l’irradiation joue un rôle certain dans le développement des cancers cutanés elle intervient différemment dans leur genèse. Les carcinomes épidermoïdes sont directement corrélés à la quantité totale de radiations solaires reçue, qu’elle l’ait été de façon continue ou intermittente. En revanche, les carcinomes basocellulaires et les mélanomes seraient principalement liés aux expositions intermittentes. (180)

Dans le cas du mélanome, les UVA jouent très vraisemblablement un rôle potentialisateur de l’action carcinogène des UVB.

Figure 36 : Les effets des rayonnements UV et IR sur la peau. (183)
IV.1.4. **Le bronzage artificiel : une menace bien réelle mais évitable**

Comme la fumée de tabac, les risques pour la santé liés à l'utilisation des cabines UV font consensus au sein de la communauté scientifique. Pourtant, les professionnels du bronzage en cabine relaient des campagnes de désinformation pour convaincre le public du contraire. C'est pour cela que en tant que pharmacien il est de notre devoir de sensibiliser nos patients sur les risques de ces cabines UV d'autant plus que les pouvoirs publics sont encore trop laxistes sur le sujet.

IV.1.4.1. L'exposition aux ultraviolets artificiels en France

L'accumulation de données scientifiques solides sur la nocivité des UV artificiels n'a pas empêché un essor sans précédent des cabines de bronzage en France. La DGCCRF (Direction générale de la concurrence, de la consommation et de la répression des fraudes) estimait à environ 18 000 le nombre d'appareils UV en France en 2010. Aujourd'hui, le chiffre de 40 000 cabines de bronzage est avancé par le ministère de la Santé. L'InVS a même intitulé son bulletin épidémiologique hebdomadaire *Le Bronzage artificiel : une menace bien réelle, mais évitable* pour insister sur le fait que cette activité tue.

Une enquête par sondage, le Baromètre cancer 2010, a été effectuée auprès de 3359 personnes âgées de 15 ans à 75 ans pour évaluer les comportements, les connaissances et les attitudes des Français vis-à-vis des UV artificiels. L'un des résultats majeurs de l'enquête est que cette pratique est déjà très répandue en France : 13% de la population française a déjà eu recours aux cabines UV. De plus, les femmes sont de plus grandes utilisatrices des installations de bronzage. La tranche d'âge des 20-25 ans est la cible à privilégier pour les actions de sensibilisation car c'est elle qui fréquente le plus ces installations et qui est la plus vulnérable aux dangers liés aux UV : le mélanome cutané. L'autre problème mis en évidence par cette enquête est que des idées fausses circulent sur les bienfaits supposés des UV artificiels d'où la nécessité de sensibiliser la population générale aux risques liés à cette pratique via les professionnels de santé.
IV.1.4.2. L'impact sanitaire des cabines UV sur le mélanome

En France, les lampes UV des installations de bronzage délivrent de fortes doses d'UVA. (185) Les doses d'UVB sont limitées à 1,5% de l'éclairement UV total émis. Cette faible dose d'UVB ne permet pas l'épaississement de la peau correspondant au mécanisme de défense en réaction aux UVB. Ainsi à bronzage égal, le mécanisme de photo-protection est plus faiblement activé dans le cas du bronzage artificiel que lors d'une exposition solaire.

Une méta-analyse publiée en 2006 montre l'augmentation significative du risque de mélanome suite à l'utilisation de cabines de bronzage. Ce risque était d'autant plus élevé que la première exposition survenait avant l'âge de 35 ans. (186) Au Royaume-Uni, Brian Diffey a estimé que chaque année environ 100 décès par mélanome pouvaient être attribuables aux cabines de bronzage. (187)

L'impact sanitaire de l'exposition aux cabines de bronzage est estimé par le calcul de fraction attribuable (FA) développé par Morton Levin. (188) C'est la proportion de nouveaux cas de mélanome que l'on peut attribuer à l'exposition aux UV artificiels. Cette fraction attribuable a été estimée d'après les données de prévalence de l'exposition produites par le Baromètre cancer 2010 et le risque relatif estimé par la méta-analyse publiée en 2006. L'analyse principale portait sur l'exposition au moins une fois au cours de la vie aux cabines UV. Elle a estimé que 4,6% des nouveaux cas annuels de mélanomes étaient imputables aux cabines UV c'est-à-dire 100 à 350 nouveaux cas incidents annuels. Les femmes sont plus nombreuses à supporter ce risque avec 76% des cas. Une personne exposée au moins une fois dans sa vie à un appareil de bronzage augmente de 15% son risque de développer un mélanome. (186) Si on suppose que les cabines UV et l'exposition aux UV naturels ont le même pronostic entre 19 et 76 décès sont imputables aux cabines UV.

Face à ce problème qui ne va cesser de croître, des mesures préventives de communication sont nécessaires : développer des campagnes de communication sur les cancers ou le photo-vieillissement associés à cette pratique ainsi que des campagnes visant à casser l'image positive que le bronzage a dans notre société. La
mise en place d'une autorisation parentale chez les adolescents est inefficace car ces parents d'adolescent fréquentent eux-mêmes ces cabines UV. (189)

L'impact sanitaire de l'usage des cabines UV en terme de mortalité est comparable à celui attribué à l'usage du Médiator (anti-diabétique oral récemment retiré du marché avec 500 à 2 000 décès sur 30 ans). Ce poids sanitaire des cabines UV est d'autant plus alarmant que cette pratique est purement à visée esthétique donc n'a aucun bénéfice pour la santé.

IV.1.4.3. Une réglementation inefficace pour protéger la santé des utilisateurs

Les cabines UV ont été classées en 2009 comme « cancérogènes certains pour l'Homme » par le Circ de l'OMS. (186)

- Normes et réglementations en vigueur en France

Le décret du 30 mai 1997 réglemente la vente et la mise à disposition du public d'appareils de bronzage. Les appareils sont déclarés au préfet ainsi que leur description technique et la formation du personnel. Un organisme agréé effectue le contrôle technique au moins tous les deux ans. (190)

Les appareils de bronzage doivent respecter une limite d'éclairement énergétique maximale pouvant se comparer à l'intensité émise par le soleil de midi dans les zones subtropicales c'est-à-dire un indice UV 12. (191) L'éclairement énergétique en UVB est limité à 1,5% en France car ces UVB sont cancérogènes. Or les UVA ont aussi un potentiel cancérogène donc les cabines UV ne sont pas moins risquées que l'exposition aux UV naturels. Une personne de phototype III ne doit pas dépasser 23 séances par an. (192) Le décret de 1997 interdit la fréquentation des cabines UV aux mineurs.

Les précautions d'emploi de l'appareil, les effets biologiques du rayonnement UV, les durées maximales d'exposition selon le phototype de peau et les risques liés
à une exposition excessive doivent être affichés dans les locaux commerciaux ou sur l'appareil lui-même. Sur l'appareil doit figurer : « Attention rayonnement ultraviolet. Respectez les précautions d'emploi indiquées sur la notice. Utilisez toujours les lunettes fournies pour la séance. ». Toute publicité sur un éventuel effet bénéfique pour la santé des UV artificiels est interdit. (190)

L'Espagne a mis en place la signature d'un consentement éclairé par tous les utilisateurs ainsi que la possession d'un carnet de bronzage. Le Brésil fut le premier à interdire complètement l'usage des appareils de bronzage en novembre 2009.

– Une réglementation non respectée

La DGCCRF a effectué en 2010 un état des lieux national des déclarations des appareils de bronzage. Parmi les 18 092 appareils recensés 2 553 n'étaient pas déclarés en préfecture (14%).

Tous les deux ans, la DGCCRF effectue une enquête nationale pour vérifier l'application des bonnes pratiques du décret du 30 mai 1997 par les professionnels des cabines UV. La DGCCRF a noté pendant ses enquêtes que le contrôle technique obligatoire tous les deux ans n'était pas toujours fait. Les mentions obligatoires identifiant l'appareil ne sont pas toujours visibles par l'utilisateur. La mise en place d'un questionnaire sur la prise de médicament ou l'utilisation de cosmétiques signé par le client est bien respectée. La nécessité de retirer tout produit cosmétique avant la séance est bien connu des professionnels et pourtant certains proposent des accélérateurs de bronzage. L'obligation de formation du personnel (de 8h) suivi d'une mise à jour tous les cinq ans n'est pas toujours respectée.

Au final, 25,4% des établissements présentent des anomalies. Mais malheureusement ces manquements à la réglementation ne sont quasiment pas sanctionnés : aucun établissement n'a subi de suspension.

Pour conclure sur cette partie sur les cabines UV quelques remarques peuvent être faites. L'interdiction de fréquenter des cabines de bronzage ne concerne que les mineurs alors que le risque de mélanome augmente de 75% quand
l'utilisation se fait avant 35 ans. La réglementation actuelle ne permet ni de maîtriser les expositions aux UV artificiels ni de diminuer l'incidence de mélanome, de cataracte ou de photosensibilisation induit par les cabines de bronzage. Ceci est aggravé par le fait que l'utilisation et l'offre actuelle se banalisent. Ainsi ne faudrait-il pas interdire les cabines de bronzage en France comme le Brésil l'a fait ? D'autant plus que l'état australien de Nouvelle Galles du Sud a lui aussi pris cette décision en 2014.

IV.2. Les produits solaires : une photoprotection indispensable contre le mélanome

Agacé par ses coups de soleil lorsqu'il navigue sur son voilier, Eugène Schueller, fondateur de L'Oréal crée l'Ambre Solaire (cf figure 37). Cette première crème solaire commercialisée dès 1936 connaît un véritable succès grâce aux premiers congés payés. Puis en 1957, les laboratoires Roc créent le premier écran solaire à très haute protection (IP 50+). A cette époque où le bronzage est un must-social et la graisse à traire en vogue la notion de protection apparaît tout de même. De nos jours, même si le bronzage est moins adulé qu'avant, il reste synonyme de bonne santé et de sensualité. Heureusement la prévention sur les risques du soleil s'est propagée. En effet, même si la peau est équipée de moyens de photoprotection naturelle ces derniers deviennent insuffisants pour protéger une peau normale surexposée ou une peau photosensible. C'est pourquoi ce paragraphe va développer les produits solaires indispensables à la lutte contre le mélanome d'autant plus qu'une étude américaine a montré que les adolescents d'aujourd'hui utilisaient moins de produits solaires qu'il y a dix ans. (193)

Figure 37 : Publicité de l'Ambre Solaire (1936). (194)
En 2013, le marché des produits solaires pesait 264 millions d'euros. Les pharmacies et les grandes surfaces représentaient chacun 45% de ce marché. Au niveau des ventes en officine, Avène est le leader avec 28% du marché suivi de La Roche Posay (15%), Bioderma (7%) et Vichy (5%). Les messages de prévention et les efforts de désaisonnalisation du produit mené par les industriels ont permis au marché de continuer de croître. (195)

Le pharmacien ne peut conseiller correctement un produit solaire à son patient s'il ne maîtrise pas sa réglementation, sa composition, la différence entre les filtres et les écrans et les précautions à prendre face aux produits solaires. Ces différentes notions sont détaillées dans cette partie.

IV.2.1. Les dispositions juridiques relatives aux produits solaires en Europe

IV.2.1.1. La réglementation actuelle

Un produit de protection solaire est un produit cosmétique défini comme :

Avant sa mise sur le marché le produit solaire doit répondre aux exigences réglementaire du Code de la Santé Publique : innocuité du produit au regard de la santé humaine et respect des bonnes pratiques de fabrication et d'essais. (196)
Les règles applicables aux produits cosmétiques et par conséquent aux produits solaires sont régie par l'Union Européenne :

- la mise sur le marché ne nécessite pas d'autorisation préalable
- le fabricant ou le responsable de la mise sur le marché doit s'assurer de la sécurité de son produit solaire et est ainsi chargé de fournir un dossier technique aux autorités nationales de contrôle ; ce dossier comporte la composition du produit, le lieu et les conditions de fabrication et les tests de sécurité et d'efficacité
- une liste des substances interdites, une liste des substances à usage limité et des listes des colorants, des conservateurs et des filtres solaires autorisés sont décidées par les instances européennes en relation avec chaque État membre ; puis en France l'ANSM et la DGCCRF s'assurent du respect de ces règles

La législation diffère selon les continents. En effet, aux États-Unis les produits solaires sont inclus dans la catégorie des produits pharmaceutiques dits OTC (« Over-the-counter ») et sont ainsi soumis à une législation plus rigoureuse.

IV.2.1.2. L'étiquetage des produits solaires (197)

L'étiquetage du produit solaire doit comporter, selon les recommandations européennes, un certain nombre de mentions utiles, claires et précises pour que le consommateur fasse son choix en tout sérénité.

- Les mentions obligatoires

La catégorie de protection solaire doit être indiquée par l'efficacité du produit. Chaque catégorie de protection est définie par un facteur de protection solaire ou SPF (Sun Protection Factor) et une protection minimale contre les UVA (cf figure 38). Le SPF indique le niveau de protection contre les dommages induits par les UVB c'est-à-dire principalement contre les coups de soleil. Il doit être au minimum de 6. Il ne garantit pas une protection contre les autres effets néfastes des UV.
Selon la Recommandation de la Commission Européenne, l'efficacité des produits de protection solaire doit être indiquée sur l'étiquette par une référence à des catégories telles que « faible », « moyenne », « haute », « très haute » protection. Chaque catégorie doit être équivalente à un niveau normalisé de protection contre les rayons UVB et UVA.

- Des conseils sur les précautions à prendre vis-à-vis des expositions solaires doivent obligatoirement figurés sur l'étiquetage.
 - « Ne restez pas trop longtemps au soleil, même si vous utilisez un produit de protection solaire »
 - « N'exposez pas les bébés et les jeunes enfants directement au soleil »
 - « La surexposition au soleil est une menace sérieuse pour la santé »

- Des instructions d'utilisation pour obtenir l'efficacité de protection solaire revendiquée doivent aussi figurer.
 - « Appliquez le produit de protection solaire avant de vous exposer au soleil »
 - « Renouvez l’application et particulièrement après avoir transpiré, avoir nagé ou vous être essuyé »

- La quantité de produit à appliquer pour obtenir l'efficacité revendiquée ainsi que les risques encourus en cas de la réduction de cette quantité sont mentionnés.
– **Mentions facultatives**

La protection minimale contre les UVA, contrairement au SPF, n'est pas obligatoire. En revanche le coefficient de cette protection anti-UVA doit être au moins supérieur au 1/3 du SPF. De plus, les industriels doivent garantir que la protection anti-UVA s'étend aux UVA longs (370 nm). Cette protection minimale est indiquée au niveau de l'étiquetage par le logo de protection UVA (cf figure 39).

![Logo de protection UVA](image)

Figure 39 : Logo de protection UVA. (199)

– **Mentions interdites**

Certaines mentions telles que « écran total » ou « protection totale » ou « ce produit assure une protection à 100% » ou « prévention durant toute la journée » ne doivent pas figurer sur l'emballage des produits de protection solaire. En effet, actuellement aucun produit ne permet de garantir une protection intégrale contre l'ensemble des UV.

– **Les allégations**

- L'allégation « nouveau » peut être uniquement utilisé si le produit comporte une modification réelle soit de sa formule ou de son utilisation soit de sa présentation ou de son conditionnement. L'industriel peut profiter de cette allégation durant un an.

- L'allégation « sans » reste limitée. L'industriel peut l'utiliser s'il souhaite indiquer l'absence de un ou de plusieurs ingrédients. Par contre cette allégation ne doit pas être l'argument principal du produit. L'allégation ne doit pas mettre en avant un risque ou un danger pour la santé ou l'environnement.
L'allégation « hypoallergénique » est utilisée pour décrire un produit conçu de manière à minimiser le plus possible les risques d'allergie. Tous les autres termes dérivés de « allergie » sont interdits.

IV.2.2. La composition des produits solaires

Les écrans contiennent deux types d'agents photoprotecteurs : les filtres (chimiques ou naturels) et les écrans (filtres minéraux). Ils doivent être photostables c'est-à-dire ne pas être dégradés sous l'effet de la lumière, insolubles dans l'eau, non toxiques et faciles à formuler. Chaque fabricant est tenu par le Code de la Santé publique de fournir aux Centres Anti-Poison la composition qualitative du produit pour pouvoir agir rapidement en cas d'intoxication. Un produit solaire se compose de molécules s'opposant à la pénétration des UV (les filtres et les écrans), d'excipients et, parfois, d'additifs variés. (200)

IV.2.2.1. Les filtres

Ces molécules aromatiques agissent par absorption d'une partie des radiations.

- Les filtres chimiques ou synthétiques

Les filtres chimiques absorbent l'énergie lumineuse en formant une couche filtrante sur l'épiderme. Lorsque la lumière UV atteint l'épiderme la molécule du filtre solaire passe à son état excité puis revient à son état stable prête à recommencer le cycle de protection. En effet les radiations UV absorbées par le filtre sont réémises sous forme d'une radiation de plus faible énergie et donc inoffensive (cf figure 40) Ces filtres agissent comme la mélanine : filtre naturel de la peau.
Chaque filtre n'absorbe que certaines longueurs d'onde qualifiant aussi son spectre d'absorption. Les principaux filtres chimiques et leurs caractéristiques sont recensés dans le tableau suivant (cf figure 41).

<table>
<thead>
<tr>
<th>Famille et Noms commerciaux</th>
<th>caractéristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTRES A SPECTRE ÉTROIT = PHOTOPROTECTION UVB</td>
<td></td>
</tr>
<tr>
<td>PABA acide para-aminobenzoïque</td>
<td>peu utilisé en France bonne stabilité à l'eau et à la lumière (bonne rémanence) bonne substantivité (se lie aux protéines de la couche cornée) coefficient d'absorption élevé</td>
</tr>
<tr>
<td>Cinnamates Parsol MCX®</td>
<td>coefficient d'absorption élevé bien toléré mais quelques allergies observées spectre étroit et peu photostable donc doit être associé à d'autres filtres</td>
</tr>
<tr>
<td>Dérivés camphrés Eusolex®</td>
<td>très bonne stabilité à la lumière peu de réactions allergiques</td>
</tr>
<tr>
<td>Salicylates Eusolex HMS®</td>
<td>très peu utilisés car coefficient d'absorption très faible</td>
</tr>
<tr>
<td>Benzimidazolés Eusolex 232®</td>
<td>filtre hydrosoluble potentialise l'action des filtres liposoluble</td>
</tr>
</tbody>
</table>
Acrylates Octocrylène®

filtre UVB débordant dans l'UVA court photostable

FILTRE A SPECTRE LARGE = PHOTOPROTECTION UVA et UVB

<table>
<thead>
<tr>
<th>Filtre Chimique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzophénones Eusolex 4360®</td>
<td>plus ou moins bien tolérés oxybenzone : pour garder son efficacité doit être ré-appliqué fréquemment, sensibilisant donc les produits en contenant doivent le préciser sur l'étiquette</td>
</tr>
<tr>
<td>Dibenzoylméthane Parsol 1789®</td>
<td>mauvaise photostabilité donc doit être associé à d'autres filtres UVB</td>
</tr>
<tr>
<td>Benzylidène camphre Mexoryl SX®</td>
<td>grande photostabilité hydrosoluble</td>
</tr>
<tr>
<td>Hydroxybenzotriazolés Mexoryl XL®</td>
<td>grande photostabilité liposoluble</td>
</tr>
<tr>
<td>Benzotriazolés Tinosorb M®</td>
<td>associe le mécanisme d'action d'un écran en réfléchissant la lumière et d'un filtre en l'absorbant couverture spectrale très large très haute photostabilité</td>
</tr>
</tbody>
</table>

Figure 41 : Les principaux filtres chimiques. (d'après 201)

- **Les filtres naturels**

Ils ne sont pas des photoprotecteurs performants. Ils servent d'adjuvants aux filtres chimiques et donnent à la formulation une connotation naturelle pour la mettre en accord avec le goût du jour. Dans le tableau suivant sont listés les filtres naturels les plus fréquents avec leurs caractéristiques (cf figure 42).
<table>
<thead>
<tr>
<th>Mélange huile de coco et huile essentielle de fleurs de tiaré ou Monoï®</th>
<th>action protectrice vis-à-vis de l'eau de mer surgraissant pas d'activité filtrante des radiations actiniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propolis</td>
<td>mélange de molécules capables d'absorber les UVA et les UVB surtout dans les sticks solaires</td>
</tr>
<tr>
<td>Extrait de Pongamia</td>
<td>filtre UVA naturel</td>
</tr>
<tr>
<td>Extrait de Galanga</td>
<td>Filtre UVB naturel</td>
</tr>
</tbody>
</table>

Figure 42 : Principaux filtres naturels et leurs caractéristiques. (d'après 202)

IV.2.2.2. Les écrans (ou filtres minéraux)

Les écrans réfléchissent les UVA, les UVB, le visible et l'IR. Ces poudres minérales inertes ont une forte photostabilité (ils résistent aux rayonnements). Ces écrans sont non allergisants, inertes et non toxiques donc ils sont privilégiés pour les enfants, les femmes enceintes, les peaux sensibles et les peaux allergiques au soleil. Par contre ces poudres pigmentaires blanches ont un inconvénient lié à leur granulométrie. Elles sont opaques, et, en conséquent, laissent un dépôt blanc à la surface de la peau.(203) Pour éviter cet effet blanc sur la peau des nanoparticules sont utilisées mais leur passage dans le sang pourrait entraîner une toxicité.

Deux écrans minéraux sont connus : le dioxyde de titane (TiO2) et l'oxyde de zinc (ZnO). Par contre seul le dioxyde de titane est présent sur la liste des filtres autorisés. Le dioxyde de titane a un fort pouvoir réfractant. Il peut être associé à des filtres chimiques sous forme de poudre blanche micronisée. (204)
IV.2.2.3. Les additifs : les anti-oxydants

Les anti-oxydants ont pour mission de protéger la peau de l'effet des radiations qui n'ont pas été absorbées et qui peuvent générer des radicaux libres. Parmi ces piégeurs de radicaux libres se trouvent : la vitamine E ou α-tocophérol, les tocotriénoïdes, le β-carotène, les flavonoïdes, l'ubiquinone. En protégeant les molécules biologiques des effets des UVA en particulier ils complètent l'action des produits ne contenant qu'un filtre UVB. (202)

IV.2.2.4. Les excipients

Un excipient est une substance neutre qui reçoit, véhicule et maintient en bon état une substance active incorporée dans le produit cosmétique. Il peut être hydrophile ou lipophile. Les excipients lipophiles les plus utilisés sont des hydrocarbures type vaseline, des triglycérides comme le beurre de karité ou de coprah, des alcools gras ou des acides gras. Les excipients hydrophiles peuvent être des humectants, des solvants ou des polymères hydrophiles par exemple. C'est l'excipient qui conditionne les concentrations maximales en filtres c'est-à-dire le SPF du produit. (202)

IV.2.3. La formulation des produits solaires

La structure des formules des produits solaires peut être aussi simple que celle d'une huile solaire ou aussi complexe que celle d'une émulsion. Le choix de la forme galénique dépend surtout du niveau de protection recherché mais aussi de la population ciblée, de l'usage (la résistance à l'eau) et du conditionnement.

IV.2.3.1. Les produits solaires liquides

L'huile solaire fut la première forme à être introduite sur le marché avec l'Ambre Solaire. Cette forme monophasique contient les filtres liposolubles mis en
solution dans une ou plusieurs huiles. Ces huiles peuvent être minérales type paraffine liquide, végétales ou synthétiques type silicone pour permettre un meilleur étalement. Des conservateurs antioxydants naturels type vitamine C ou vitamine E ou de synthèse sont rajoutés. Leurs avantages sont d'être hydrophobes et de bien résister à l'eau. Par contre ils ont tendance à s'étaler à la surface de la peau et ainsi de former des films très minces peu protecteurs. Ainsi la protection assurée est d'autant plus faible que le film est plus mince. (202)

IV.2.3.2. Les émulsions

L'émulsion est un mélange de deux liquides non miscibles entre eux : une phase lipophile et une phase hydrophile. Ceci permet de dissoudre aussi bien des filtres hydrophiles que lipophiles. Les tensioactifs présents dans l'émulsion pour la stabiliser peuvent jouer un rôle de solubilisant pour y associer des pigments insolubles comme les filtres minéraux et les maintenir en suspension stable dans l'émulsion. Selon la texture de l'émulsion le formulateur pourra obtenir aussi bien un lait (émulsion fluide) qu'une crème épaisse. La phase hydrophile peut comporter : l'eau distillée, l'humectant, le gélifiant, les conservateurs, les filtres hydrosolubles, les tensioactifs. Dans la phase lipophile se trouve : les cires, les graisses type huile de coco, les antioxydants, les filtres lipophiles.

Les émulsions H/E (lait, mousses ou crèmes) sont peu grasses et peuvent contenir des écrans ce qui leur permet de couvrir une gamme d'indices de protection très large. Elles sont peu rémanentes donc elles doivent contenir des polymères cationiques pour augmenter la fixation du filtre sur la peau.

Les émulsions E/H sont hydrophobes et ont un haut pouvoir de protection car elles allient filtres synthétiques et écrans. Elles sont la forme la plus photoprotectrice vis-à-vis du soleil et de la déshydratation. (202)
IV.2.3.3. Les gels

Les gels hydroalcooliques ou aqueux peuvent contenir uniquement des filtres hydrophiles. Leur solubilité va limiter leur concentration utilisable donc l'efficacité de la protection. Ils sont formulés de cinq ingrédients : de l'eau distillée, des humectants pour maintenir l'eau (glycérol, sorbitol, PEG), des conservateurs pour limiter le développement microbien (parabens), des gélifiants pour donner la consistance au gel (carbomères, dérivés de cellulose) et des filtres hydrosolubles. Cette forme a l'avantage d'avoir un aspect transparent et de pénétrer instantanément avec parfois un toucher sec. Ils sont à privilégier chez l'homme. (202)

IV.2.3.4. Les sticks solaires

Ils sont utilisés pour les lèvres, le nez, les joues. Constitués par des mélanges d'huiles, de graisses, de cires et de conservateurs les sticks solaires présentent sous une forme solide un moyen pratique et simple pour appliquer un filtre sur une zone peu étendue. Ces sticks huileux parfaitement résistant à l'eau renferment des filtres lipophiles. Cette forme permet d'incorporer une importante quantité de filtres et ainsi d'obtenir un indice de protection solaire élevé. Les sticks antisolaires à base de propolis peuvent être utilisés pour une action préventive ou curative de l'herpès labial. (202, 205)

IV.2.4. Précautions à prendre face aux produits solaires

Chaque année plus de 15 millions de produits solaires sont vendus en France. Or certaines études ont montré que les filtres chimiques pouvaient être des perturbateurs endocriniens et étaient à l'origine de la destruction des massifs coralliens.
IV.2.4.1. Des problèmes en terme d'efficacité

L'apparition de coup de soleil même après application du produit solaire peut s'expliquer par la mauvaise application ou parfois l'oubli d'application du produit surtout au niveau du dos et du cou. (206) En effet, la dose appliquée réellement par l'utilisateur est loin d'être celle employée dans les tests de détermination de l'efficacité. La dose appliquée dans ces tests in vivo est de 2 mg/cm² contre 0,5 à 1 mg/cm² réellement appliquée en pratique. (207)

Une étude d'efficacité a porté sur 58 produits de protection solaire. Chaque produit a fait l'objet d'une détermination du SPF in vitro. 71% des produits testés sont conformes aux allégations portées sur l'étiquetage. Pour les produits vendus en pharmacie ce taux atteint 77%. Par contre 100% des produits contenant uniquement des filtres minéraux sont non conformes. Il est donc impossible d'un point de vue galénique d'obtenir de hauts SPF en utilisant uniquement des filtres minéraux. En effet un filtre minéral seul ne peut pas couvrir tout le spectre UV et n'apporte pas de protection pour les UVA longs. (208)

Le pharmacien doit donc privilégier les associations filtres organiques et minéraux.

Pour qu'un produit solaire puisse être labellisé bio, il doit contenir uniquement des filtres minéraux (TiO2 ou ZnO). Donc les produits solaires biologiques sont inefficaces. (209)

Ainsi pour éviter ces problèmes d'efficacité le pharmacien se doit de connaître les compositions de ses produits solaires et de rappeler à ses patients les règles de bon usage des produits solaires.

IV.2.4.2. Des réactions cutanées évitables

Certains filtres solaires peuvent entraîner des dermites allergiques de contact, des dermites irritatives ou des photosensibilisations. Ces réactions cutanées sont majorées dès lors que le filtre est rappliqué. L'utilisation des filtres incriminés est progressivement limitée dans les produits solaires. (210)
Les jeunes enfants peuvent présenter un eczéma de contact souvent imputé à l'octocrylène. Les adultes ayant des antécédents de photoallergie au kétoprofène peuvent présenter une intolérance à un produit solaire sous forme d'eczéma photoaggravé. Une association de réactions de photosensibilisation à l'octocrylène et au kétoprofène reste inexplicée car il n'existe pas de parenté chimique entre les deux molécules. (211)

Compte tenu de la large utilisation des produits solaires les réactions locales restent très peu fréquentes: les produits solaires ne posent donc pas de problème majeur de tolérance cutanée. De plus pour minimiser ce risque de réaction cutanée le pharmacien a un rôle à jouer en questionnant son patient sur d'éventuels antécédents de photoallergie au kétoprofène.

IV.2.4.3. Un passage systémique sans danger

Le passage transcutané dépend notamment de l'état de la peau (pénétration multipliée par sept si présence d'un fort coup de soleil) et de l'âge de l'individu (pénétration multipliée par 2,7 chez le nourrisson). Schlumpf et al. ont montré un effet œstrogénique du 4-méthylbenzylidène-camphre (4-MBC) et du 3-benzylidène-camphre (3-BC). (212) Ces résultats ont été obtenus après une administration orale continue à des doses très importantes et très prolongées ne correspondant en rien à l'usage habituel des produits solaires. Janjua et al. ont montré que malgré la présence des filtres dans les urines, il n'y avait pas de variations du taux des hormones sexuelles. (213)

L'AFSSAPS a été saisie de faire un rapport sur le risque attribuable aux substances cosmétiques reprotoxiques et/ou perturbateurs endocriniens. Tout d'abord « l'AFSSAPS recommande de limiter chez l'adulte l'incorporation de la benzophénone-3 ainsi que de ne pas l'utiliser chez les enfants jusqu'à l'âge de dix ans». L'AFSSAPS a décidé de limiter la multiplication et la concentration des filtres chimiques dans la composition des produits solaires. Elle limite aussi l'addition des filtres solaires dans les autres produits cosmétiques de façon à réduire la multiplication des sources de pénétration transcutanée.
Les filtres minéraux, préférés chez le jeune enfant, sont-ils plus sûrs que les filtres organiques ? Depuis que le dioxyde de titane et l'oxyde de zinc sont utilisés sous forme de nanoparticules des suspicions apparaissent. Les suspicions sur un risque potentiel des nanoparticules résultent de leur capacité à modifier le système immunitaire et ainsi d'induire des maladies auto-immunes. Ils peuvent aussi créer sous irradiation des radicaux libres à l'origine de lésions de l'ADN. L'analyse bibliographique effectuée par l'AFSSAPS relative à la toxicité du TiO2 et du ZnO sous forme nanoparticulaire a conclu que leur pénétration se limite aux couches superficielles de la peau saine. Mais elle ne peut exclure le passage systémique surtout pour les nanoparticules de ZnO après application sur peau lésée. L'AFSSAPS recommande de ne pas utiliser de produit cosmétique contenant du TiO2 sous forme nanoparticulaire sur la peau lésée, après un coup de soleil, sur le visage et dans des locaux fermées pour les sprays aérosols. Depuis juillet 2013, les fabricants sont obligés de mentionner la présence de substances sous forme de nanoparticules, au même titre que tous les ingrédients des cosmétiques.

IV.3. Conseils et règles d'exposition : le rôle du pharmacien

Le pharmacien d'officine, professionnel de santé, doit savoir utiliser ses connaissances en dermocosmétique : l'anatomie de la peau, la réglementation des produits cosmétiques et les recommandations des autorités de tutelle. Il se doit de connaître les différents produits de protection solaire c'est-à-dire leur composition, leur mode d'action, leur utilisation, leur précaution d'emploi pour informer ses patients et pouvoir argumenter ses conseils.

Face au soleil il est primordial d'adopter des règles de bon sens. Une bonne photoprotection est celle qui, bien sûr, prémunit contre l'ensemble des dégâts du soleil dont le mélanome. La meilleur protection reste l'absence d'exposition solaire et le port de vêtements couvrants. D'autant plus que la photoprotection interne telle que les compléments alimentaires n'a pas démontré un intérêt confirmé.
IV.3.1. Les conseils pour bien choisir son produit de protection solaire

Pour prévenir les conséquences néfastes du soleil, le meilleur moyen est de choisir son produit de protection solaire en fonction de son phototype, de la puissance de l'ensoleillement et de savoir utiliser les différents moyens de photoprotection.

IV.3.1.1. En fonction de la sensibilité de la peau au soleil (le phototype)

Plus la peau est claire, plus il est nécessaire de se protéger du soleil. Quand la peau n'est pas habituée au soleil c'est-à-dire en début d'exposition l'utilisation de produits à haute protection est fortement recommandée. Pour connaître le phototype de son patient le pharmacien doit le questionner sur sa capacité à bronzer et bien sûr observer sa couleur de peau et de cheveux (cf figure 45).

Figure 45 : Sensibilité de la peau au soleil. (221)
IV.3.1.2. En fonction des conditions d'exposition

Plus l'ensoleillement est intense, plus il est recommandé de se protéger du soleil. Les risques à court et à long termes sont fonction de la puissance du soleil, c'est-à-dire de la situation géographique et de la saison, et de la durée d'exposition. Le pharmacien doit donc interroger son patient sur la situation dont laquelle il compte utiliser son produit solaire (cf figure 46).

<table>
<thead>
<tr>
<th>Exposition modérée</th>
<th>Vie au grand air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposition importante</td>
<td>Plages, activités extérieures longues, ...</td>
</tr>
<tr>
<td>Exposition extrême</td>
<td>Glaciers, tropiques, ...</td>
</tr>
</tbody>
</table>

Figure 46 : Les conditions d'exposition. (221)

IV.3.1.3. Le produit de protection solaire à choisir : résumé

Figure 47 : Choisir son produit de protection solaire. (221)

<table>
<thead>
<tr>
<th>Sujet extrêmement sensible au soleil</th>
<th>Haute Protection (SPF 30-50)</th>
<th>Très Haute Protection (SPF 50+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sujet à peau intermédiaire</td>
<td>Faible Protection (SPF 6-10)</td>
<td>Moyenne Protection (SPF 15-20-25)</td>
</tr>
<tr>
<td>Sujet à peau assez résistante</td>
<td>Faible Protection (SPF 6-10)</td>
<td>Faible Protection (SPF 6-10)</td>
</tr>
</tbody>
</table>
IV.3.1.4. En fonction des zones du corps

Le choix de la forme galénique se fait en fonction de la zone à protéger et du type de peau.

- Le visage et le corps

Pour protéger le visage et le cou, une crème émulsion E/H est conseillée notamment pour les peaux sèches car elle est grasse. Par contre chez une personne à peau grasse une émulsion H/E ou un gel est à privilégier. Avène a une gamme spécifique aux peaux grasses et acnéiques : Cleanance solaire® contenant des poudres matifiantes et un séborégulateur.

Pour protéger le corps, les laits E/H résistent à l'eau et à de fortes transpirations. Les huiles et les émulsions H/E s'appliquent facilement sur la peau mais sont moins protectrices et rémanentes.

- Les lèvres

Au niveau des lèvres la peau est fine et dépourvue de mélanocytes c'est-à-dire incapable de se protéger contre les rayonnements solaires. Pour lutter contre le dessèchement voir les gerçures des lèvres un stick ou un baume à lèvre avec une protection solaire est appliqué plusieurs fois dans la journée.

- Les cicatrices

Tant que la cicatrice est rouge ou rose elle doit être protégée. En effet elle va bronzer comme le reste du corps mais sa pigmentation sera définitive. Une crème de protection solaire d'indice maximal est appliquée même si la protection vestimentaire reste la meilleure solution. Avène stick zones sensibles® SPF 50+ protège efficacement les cicatrices ou des zones localisées.
IV.3.1.5. Les précautions en cas d'antécédents allergiques ou photo-allergiques

En cas d'antécédents allergiques ou photo-allergiques le pharmacien doit bien lire la composition du produit solaire pour rechercher dans cette composition la présence de l'allergène responsable de la sensibilisation de son patient. (202)

IV.3.1.6. Les règles d'exposition

Les spécialistes sont formels : la meilleure protection contre le soleil reste tout simplement l'éviction solaire. Surtout lorsque les rayons ultraviolets sont les plus intenses, c'est-à-dire entre 12h et 16h. En effet, plus le soleil est haut dans le ciel, plus intense sont ses rayons car le trajet jusqu'au sol est plus court. Pour le reste tout est une question de bon sens et de prudence. (214)

L'exposition doit être progressive notamment les trois premiers jours. En effet, le bronzage sera d'autant plus durable qu'il aura été acquis progressivement. De plus, il ne faut pas croire qu'être en mouvement dispense des expositions aux UV : des coups de soleil peuvent être attrapés en nageant ou en faisant du volley-ball.

IV.3.1.7. Le capital solaire

Face au soleil nous ne sommes pas tous égaux. En effet le capital solaire est génétiquement programmé. A la naissance nous disposons d'un capital solaire, c'est-à-dire d'un temps d'exposition maximal auquel nous avons droit pour toute notre vie. Les effets à long terme du soleil sont doses dépendants et cumulatifs donc chaque exposition entame notre capital. Ainsi au cours de notre vie, les expositions vont consommer progressivement notre « capital solaire », et lorsque les capacités d'adaptation seront épuisées, les premiers dommages cutanés vont apparaître. En effet la photoprotection naturelle est limitée. Le photo-vieillissement et les cancers cutanés chez les travailleurs d'extérieur comme les moniteurs de ski ou les agriculteurs le démontrent.
Ce « patrimoine solaire », propre à chaque individu, doit être connu, géré et économisé par chacun pour ne pas dépasser la dose-seuil. L'expression du Professeur Jeanmougin est très intéressante : « le capital soleil est un permis à points à économiser ». Il faut d'autant plus l'économiser que notre phototype est clair. Il a été évalué entre deux limites : 50 000 heures pour les individus à peau claire et 150 000 heures pour les peaux mates et colorées. (228, 229)

Le pharmacien se doit de faire connaître cette notion de capital solaire à ses patients pour les sensibiliser et les responsabiliser.

IV.3.2. Les conseils pour bien utiliser son produit de protection solaire

IV.3.2.1. La quantité appliquée

La quantité appliquée sur le corps doit se rapprocher le plus possible de celle appliquée lors des tests pour définir le SPF étiqueté : 2 mg/cm². Un homme de taille moyenne doit appliquer 35 ml qu'il devra renouveler c'est-à-dire 6 cuillères à café sur tout le corps. Une femme doit appliquer 30 ml sur tout le corps pour atteindre le niveau de protection étiqueté sur le produit. Le SPF se réduit de manière exponentielle en cas de diminution de cette dose appliquée. En effet, pour une diminution de moitié de la dose le SPF se divise par 2.5. (222)

IV.3.2.2. La régularité d'application

La régularité d'application est fondamentale dans la prévention des effets chroniques du soleil. Il est recommandé d'appliquer le produit de protection solaire 30 minutes avant le début de l'exposition, pour permettre une pénétration du produit, puis de renouveler l'application toutes les 2 heures. (223)
L'étude de Phillips insiste sur l'importance de la régularité d'application. Elle a comparé la protection contre les dommages histologiques UV-induits selon si le produit de protection solaire a été appliqué tous les jours ou s'il a été appliqué de façon intermittente. L'étude a montré que l'utilisation quotidienne de produit de SPF 15 procure une protection supérieure à celle offerte par un produit de SPF double mais appliqué de façon intermittente. Le pharmacien doit donc insister sur la compliance ainsi que sur la nécessité de rappliquer le produit de protection solaire après toute sudation importante, baignade, activité physique (224). L’usage régulier d’un produit de protection solaire réduit la survenue des kératoses actiniques et des carcinomes épidermides. En effet, ces lésions apparaissent après une certaine dose d'UV reçue au cours de la vie. (225) Par contre l'usage régulier ne réduit pas le risque de carcinome basocellulaire qui lui n’est pas dose-UV dépendant.

Une cohorte australienne a montré que l'utilisation régulière pendant 5 ans d’un produit de SPF 15 prévenait la survenue d’un mélanome les années suivantes. (226) Le pharmacien a donc tout intérêt à conseiller les crèmes de jour hydratante SPF 15 pour un usage quotidien.

IV.3.2.3. La durée de vie des produits de protection solaire

Il est important de respecter la « date de durabilité minimale » c'est-à-dire la date de péremption si elle est indiquée sur l'emballage du produit : « A utiliser de préférence avant fin ... ». Si le logo de la figure 48 est indiqué sur le produit il faut respecter la « période après ouverture » (PAO) après la première utilisation. Les filtres solaires se dénatureraient au cours du temps et donc le produit seraient moins efficace.

Figure 48 : Logo période après ouverture (PAO). (227)
L'utilisation du produit ne doit pas dépasser 12 mois après sa première ouverture.
De plus, il est important de ne pas utiliser un produit qui a changé d'aspect et/ou d'odeur après une certaine période d'utilisation mais aussi de bien refermer le produit après chaque utilisation. Pour une meilleure conservation du produit il est nécessaire d'éviter les écarts de température, les sources de chaleur et l'exposition directe au rayonnement du soleil. Par exemple si une émulsion est déphasée ou si il y a des grains ou des grumeaux à l'intérieur le produit doit être jeté. (221)

IV.3.3. Les autres moyens de photoprotection

IV.3.3.1. La protection vestimentaire

La photoprotection vestimentaire dite passive doit être adaptée à l'activité pratiquée au soleil, aux conditions d'ensoleillement (latitude, saison, heure de la journée) et au type de peau.

- Le chapeau

Il doit avoir un bord large (7cm) pour protéger les oreilles, le nez, le front et la nuque. Il divise par 2 la quantité d'UV reçue sur le visage. Il est indispensable pour les personnes chauves.

- Les lunettes

La prévention primaire contre les UV passe par le port de lunettes de soleil. Depuis 1995 des normes européennes définissent la qualité des filtres des lunettes de soleil. Il faut choisir des lunettes estampillées CE suivi d'un chiffre de 0 à 4 suivant la protection souhaitée (cf figure 43). Les lunettes doivent être enveloppantes, les rayons pouvant passer par les côtés, de tailles adaptées, teintées pour protéger de éblouissement. La norme « CE 3 » garantit une filtration moyenne suffisante. (215, 216)
- Les vêtements

Pour lutter efficacement contre les rayons ultraviolets il est important de combiner les vêtements à la crème solaire surtout chez les enfants. Les UV passent moins si le tissu est à fibres serrées et de couleur sombre. Le noir a un pouvoir protecteur sept fois supérieur à celui du blanc. L'humidité du vêtement comme la transpiration ou la baignade diminue la protection vestimentaire. Un indice de protection des tissus a été défini (UPF pour Ultraviolet Protection Factor) pour les vêtements anti-UV.

- UPF de 15 à 24 : bonne protection
- UPF de 25 à 39 : très bonne protection
- UPF de 40 à 50+ : excellente protection, ce tissu bloque de 97,5 à 98% des rayons UV

Ces vêtements anti-UV réfléchissants sont déjà commercialisés dans des magasins de sport. Les personnes qui passent leur journée dehors ou qui ont une peau très sensible aux rayons UV peuvent les porter. (217)
IV.3.3.2. Les produits complémentaires

- Les patchs anti-UV

Il s'agit de pastilles à coller sur la peau, dont la couleur varie en fonction de la quantité d'UV reçue sur la peau (cf figure 44). Il s'applique sur une zone exposée au soleil et se recouvre de produit solaire comme le reste du corps au fil de la journée. La pastille passe de sa couleur chair initiale au bleu dès son exposition au soleil et plus particulièrement aux UVB responsables des coups de soleil. Lorsqu'il est nécessaire de remettre de la crème solaire la pastille devient marron et orange dès que l'individu présente un risque de brûlure. Lorsque ce dernier signal d'alerte apparaît il est conseillé à la personne de se couvrir ou d'arrêter son exposition solaire. Ces patchs sont destinés aux phototypes clairs et aux enfants. Ils cherchent à faire prendre conscience que même si on ne ressent rien au niveau de la peau celle-ci reçoit des doses très importantes d'UV. Son but est de matérialiser la dose d'UV à laquelle la peau est exposée. (218)

Figure 44 : Un exemple de patch anti-UV. (219)

- Les compléments alimentaires : les préparateurs de bronzage

Chaque année dès le printemps, les linéaires des pharmacies se remplissent de compléments alimentaires. Ils ont pour but de préparer la peau au bronzage et ainsi de lutter contre les dommages provoqués par les UV en renforçant les défenses cellulaires de l'épiderme. Ils ont aussi pour but d'améliorer l'hydratation de la peau. Ces produits sont formulés à base de précurseurs de mélanine comme la tyrosine et/ou des ions métalliques comme le cuivre et le zinc indispensables à la synthèse des mélanines naturelles. Les compléments à privilégier sont à base de carotènes végétaux, comme la lutéine, extrait du souci qui est un pigment caroténoïde retrouvé dans la rétine de l'œil et qui la protège des méfaits des rayonnements solaire. En
2012, les autorités sanitaires européennes ont interdit aux compléments alimentaires contenant des caroténoïdes de prétendre protéger la peau des effets délétères des rayons ultraviolets ou maintenir l'hydratation de la peau. En effet leur capacité à protéger modérément la peau contre les effets nocifs du soleil n'a été que faiblement démontrée. Cette interdiction vaut aussi pour le lycopène, puissant antioxydant, qui atténue les allergies au soleil. Ces principes actifs naturels sont notamment indiqués chez les personnes faisant des allergies au soleil, les personnes à peau claire ou sensible.

Les huiles de bourrache, d'onagre ou de pépins de raisin contiennent des acides gras oméga-6 qui protègent la peau des effets desséchants de l'exposition solaire. Mais comme aucune étude n'a validé cet effet les autorités sanitaires européennes ont interdit aux compléments alimentaires contenant ces huiles de prétendre protéger la peau des effets du soleil.

Les compléments alimentaires doivent être pris quinze jours à un mois avant le début de l'exposition et être poursuivi tout au long de l'exposition. Le pharmacien doit insister sur le fait qu'ils ne protègent pas des UV donc qu'une photoprotection adaptée est nécessaire. Il faut aussi prendre note que les β-carotènes augmentent l'incidence du cancer du poumon donc qu'ils sont fortement déconseillés chez le fumeur. (220)

exemple de produit : PHYTOBRONZ® de Arkopharma

C'est un complément alimentaire associant du β-carotène, de la vitamine E et des huiles. Le β-carotène est un précurseur de la vitamine A qui contribue au maintien de l'éclat de la peau. La vitamine E et le β-carotène sont des antiradicalaires qui assurent la photoprotection. Les huiles de bourrache, de sésame et d'argan aident à maintenir la souplesse et l'élasticité de la peau. La posologie est d'une capsule par jour à démarrer au moins quinze jours avant l'exposition et à continuer après l'exposition solaire.
- les produits après soleil

Les émulsions après soleil doivent être appliquées pendant au moins un mois après l'exposition. Ils contiennent des actifs hydratants comme des polyols, réparateurs et rafraîchissants ainsi que parfois de l'eau thermale apaisante et anti-irritative. Ils permettent ainsi d'hydrater intensément la peau en la rechargeant en eau, d'apaiser la sensation de chaleur ou la sensation de tiraillement. Le film hydrolipidique a été agressé par le soleil, l'eau, le sel … L'après-solaire est capable de le reconstituer pour augmenter la durée de l'hydratation et du bronzage.

IV.4. L'éducation à l'exposition solaire

Devant l'augmentation constante des cancers cutanés et d'autant plus du mélanome, des campagnes d'information et de prévention des risques solaires à destination du grand public sont aujourd'hui obligatoires. Les cibles privilégiées de ces messages restent les enfants et les adolescents puisque c'est la surexposition solaire à cette période de la vie qui entraîne un risque ultérieur de mélanome.

IV.4.1. L'indice universel de rayonnement UV solaire et la météo solaire

IV.4.1.1. L'indice universel de rayonnement UV solaire : un outil de pédagogie

L' IUV exprime l'intensité du rayonnement ultraviolet solaire qui atteint la surface terrestre. Sa valeur minimale est zéro et plus elle est élevée plus le risque de lésions cutanées et oculaires est grand et moins il faut de temps pour qu'elles apparaissent. L'IUV cherche à sensibiliser le public au risque de surexposition au rayonnement UV et à alerter la population sur la nécessité de mesures de protection.
Cet outil pédagogique cherche ainsi à modifier les attitudes et les comportements vis-à-vis de l'exposition aux UV. Les personnes les plus visées sont les enfants et les touristes.

Le rayonnement UV et donc l'IUV varient au cours de la journée. La météo solaire va donner la valeur maximale quotidienne de l'IUV c'est-à-dire autour du midi solaire (midi-14h). Cependant, si la nébulosité (présence de nuage) est variable, l'IUV sera indiqué sous forme de fourchette. La météo solaire c'est-à-dire l'IUV accompagne les prévisions météorologiques des journaux, de la télévision et de la radio.

L'objectif final est que la population générale considère l'IUV donné par la météo solaire comme une information quotidienne utile pour promouvoir la protection solaire. Pour cela le message doit être simple et compréhensible.

IV.4.1.2. Les messages de protection solaire ramenés à l'IUV

Le pharmacien doit insister sur le fait que l'utilisation de la crème solaire ne doit pas permettre d'augmenter la durée de l'exposition. La protection solaire repose sur deux concepts : celui d'un IUV, seuil à partir duquel la protection est recommandée, et celui d'une réponse graduée en fonction de l'IUV, consistant à renforcer progressivement les mesures de protection. À partir d'un IUV 3 la protection est nécessaire et quand il atteint 8 et plus le message doit être renforcé. (cf figure 49)

La présentation graphique standardisée de l'IUV favorise l'harmonisation des messages de la météo solaire et ainsi facilite la compréhension du concept d'IUV. De plus, un code couleur est utilisé pour distinguer les zones géographiques où l'intensité du rayonnement UV est différente. (cf figure 49)

- index 1 à 2 : risque faible = protection non nécessaire
– index 3 à 5 : risque modéré
– index 6 à 7 : risque élevé
– index 8 à 10 : risque fort
– index 11 : risque extrême

Figure 49 : Protection solaire recommandée sous forme de commandements.

(230)

Donc l'IUV peut sauver des vies humaines, protéger la santé humaine et aider à rester jeune. Le pharmacien se doit donc d'informer ses patients de l'existence et de la nécessité de cet IUV au quotidien.

Les messages élémentaires de protection solaire que le pharmacien ne doit cesser de répéter sont les suivants :

– limiter l'exposition en milieu de journée
– préférer l'ombre
– porter des vêtements protecteurs
– porter un chapeau à bord large pour protéger les yeux, le visage et le cou
– protéger les yeux avec des lunettes de soleil enveloppantes
– appliquer une couche épaisse et rappliquer régulièrement une crème solaire à
large spectre dont le SPF est au moins égal à 15
- ne pas utiliser d'appareils de bronzage
- protéger les nourrissons et les jeunes enfants !!!!!!
- avant 1 an un enfant ne doit jamais être exposé directement au soleil

IV.4.2. Les actions de prévention

IV.4.2.1. La semaine de la protection solaire

Du 14 au 22 juin 2014 la Ligue contre le cancer a organisé la 3ème édition de la Semaine de la protection solaire. Les objectifs sont de sensibiliser aux risques solaires, d'informer sur les gestes protecteurs, en particulier auprès des jeunes enfants et de promouvoir l'aménagement d'espaces ombragés. A cette occasion des opérations partout en France ont lieu avec le soutien de partenaires divers pour multiplier les messages d'information et de prévention auprès de divers publics. Un guide ludique « 10 conseils pour profiter en toute sécurité du soleil » a été distribué dans les magasins Décathlon et les centres UCPA en autre (cf figure 50).

Figure 50 : Guide ludique intitulé « 10 conseils pour profiter en toute sécurité du soleil » (231)
Tout au long de l'année, la Ligue contre le cancer organise des actions de prévention et d'éducation pour la santé sur tout le territoire et en Outre-mer. Elle interviennent en milieu scolaire en proposant des ateliers aux enfants, en formant les professionnels de santé de la petite enfance par exemple. Elle propose aussi des conférences grand-public. La cible prioritaire reste les enfants puisque les coups de soleil dans l'enfance augmentent le risque de développer un mélanome à l'âge adulte. Pour sensibiliser ces enfants la Ligue contre le cancer a développé des jeux, des supports de communication, des marques pages par exemple. Ainsi elle encourage les enfants dès le plus jeune âge à faire preuve d'intelligence face au soleil.

Pendant cette 3e édition la Ligue contre le cancer a rappelé l'importance d'installer des espaces ombragés dans les lieux privés et publics.

IV.4.2.2. L'association Sécurité Solaire

Elle a été créée en 1994 à l'initiative d'un groupe pluridisciplinaire de scientifiques. Elle a pour objectif la prévention des risques pour la santé qu'engendrent les surexpositions solaires. Les trois axes principaux d'action de l'association sont : l'information, l'éducation et la formation.

L'association effectue les prévisions du rayonnement ultraviolet c'est-à-dire l'Index UV pour plus de 200 villes en France. Ces bulletins de météo solaire accompagnés de conseils pratiques et adaptés pour se protéger du soleil ont changé la perception par les Français du soleil. L'association a aussi mis en place un programme pluriannuel d'éducation à la santé et à la citoyenneté : « Vivre avec le soleil » à destination des écoles, des centres de vacances et de loisirs, et des familles. Le volet scolaire est développé avec la production d'affiches par les élèves ou des expériences. L'association dispense des formations sur le thème du soleil et comment l'apprivoiser aux enseignants, animateurs, éducateurs à la santé.
Chaque année des partenariats avec les grandes chaînes de télévision, les radios et la presse quotidienne nationale et régionale sont mis en place. L’association édite chaque année des outils validés par son conseil scientifique comme des affiches, des brochures, des CD Rom, des jeux servant aux campagnes et programmes de l’association. Un site internet www.soleil.info regroupe les services de météo solaire, l'édition de bulletins UV, un centre de documentation.

Figure 51 : Le jeu du soleil. (232)
Sous la forme d'un jeu de l'oie ce jeu permet d'apprendre aux enfants le comportement à tenir pour éviter la surexposition solaire.

Figure 52 : Les Incollables « Vivre avec le Soleil ». (232)
Cet outil simple est utilisé aux centres de loisir ou en famille.

IV.4.2.3. La campagne de prévention et de sensibilisation sur les risques solaires 2014 par Inpes

Une campagne de communication par Inpes fut déployée du 1er juillet au 1er septembre 2014 pour informer la population, en particulier les parents, sur les risques liés au soleil et les précautions à prendre. Comme chaque année depuis 1998 cette campagne nationale a pour but de responsabiliser chacun d’entre nous en expliquant le bien-fondé des gestes préventifs. Pour se faire elle comprend la programmation de quatre spots radio sur les stations nationales et autoroutières où un Professeur est interrogé par un jeune sur des questions liées au soleil:
– « Pourquoi ne pas bronzer entre midi et 4h ? »
– « Pourquoi porter un T-shirt, des lunettes et un chapeau au soleil ? »
– « Pourquoi mettre de la crème solaire toutes les 2h ? »
– «Pourquoi les enfants doivent-ils être protégés doublement du soleil ? »

Des messages de prévention sont aussi diffusés pendant « la météo des plages » de France 2 et France 3 ainsi que sur les mobiles via les applications Météo France et La chaîne Météo. (233)

L’Inpes a édité en collaboration avec le Ministère de la Santé et l’INCa une fiche mnémotechnique : Prévention des risques solaires : les conseils du pharmacien. Cette fiche mémo est mis à disposition par le Cespharm ainsi que des affiches et des dépliants.

Figure 53 : L’affiche de l’Inpes pour sa campagne de prévention de 2006. (234)

Figure 54 : Les cinq conseils de protection lors des campagnes estivales. (235)
Le programme INTERSUN lancé en 1993 par l'OMS a pour but de réduire les expositions aux UV et de promouvoir des habitudes de prévention. Ce programme anime la recherche sur les effets du rayonnement UV sur la santé et diffuse aux États membres de l'OMS des recommandations de prévention des risques liés à ces expositions. Par exemple, INTERSUN vise à promouvoir l'utilisation de l'indice UV comme outil pédagogique de sensibilisation à la protection solaire.
CONCLUSION

Le pronostic de ce cancer demeure très sombre dès lors qu’il est diagnostiqué tardivement, malgré les progrès thérapeutiques. Pourtant le mélanome est l’un des rares cancers dont le principal coupable est connu : le soleil. La prévention doit être au cœur des interventions des professionnels de santé pour renverser son incidence en constante augmentation.

La prévention primaire a pour objectif de réduire les expositions solaires et les expositions aux UV artificiels. Cette exposition au principal facteur de risque peut être modifiée par des changements comportementaux. Les messages de prévention primaire délivrés par le pharmacien sont essentiels. Lors de la délivrance de produits de protection solaire il doit rappeler les effets néfastes du soleil et les règles d’exposition solaire. Il doit aussi orienter et conseiller au mieux son patient pour le choix d’un produit de protection solaire adapté à son phototype, au type d’exposition et à la zone à protéger. Le pharmacien doit garder à l’esprit que la meilleure photoprotection reste l’éviction solaire et le port de vêtements couvrants et son devoir est d’en informer ses patients. Le pharmacien doit aussi sensibiliser son public au danger des cabines de bronzage et lutter contre les idées reçues sur les bénéfices présumés des UV artificiels.

La prévention secondaire a deux objectifs : l’éducation des professionnels de santé sur le diagnostic précoce du mélanome et l’éducation à l’auto-examen des personnes à risque. En effet le mélanome est l’un des rares cancers que l’on peut détecter soi-même assez précocement. Le pharmacien doit insister sur l’importance de dépister un mélanome à un stade débutant pour permettre sa guérison. En tant qu’éducateur pour la santé le pharmacien doit identifier les personnes à risque de mélanome et les orienter vers un dermatologue devant toute lésion suspecte de mélanome.

Malgré ces préventions contre le mélanome, son incidence ne cesse de croître depuis trente ans en France et partout dans le monde. Il est donc essentiel de poursuivre ces efforts de sensibilisation et de prévention même si certaines questions peuvent se poser.
Des campagnes de prévention plus choquantes comme celles de la Sécurité routière ne seraient-elles pas nécessaires pour faire prendre conscience aux populations du véritable danger du soleil sur leur peau ?

Des campagnes dénonçant les risques des cabines de bronzage permettraient-elles de donner un véritable coup d'arrêt à l'expansion de celles-ci ? Ou bien la seule mesure qui vaille est-elle l'interdiction totale des cabines de bronzage ?

Des fiches mnémotechniques délivrées en même temps que le produit de protection solaire ne permettraient-elles pas de renforcer l'éducation instaurée par le pharmacien ?
1. www.who.int/uv/faq/skincancer/fr/index1.html
2. www.arcagy.org/infocancer/localisations/autrescancers/melanome/maladie/la-peau.html
3. www.sfdermato.org/
4. www.prevu.com/Fran%C3%A7ais/hcp/skinchol.html
6. Atlas de poche de dermatologie Martin Rocken, Martin Schaller, Elke Sattler, Walter Burgdorf Médecine Sciences Publications

www.allodocteurs.fr/actualite-sante-le-melanome-uveal-un-cancer-rare-de-l-oeil-12840.asp?1=1

Partie 1 - Tumeurs solides

49. FRANCIM, Hospices civils de Lyon, INCa, Inserm, and InVS, 2010

50. FNORS- Le cancer dans les régions de France Juin 2005

51. euromelanoma.org

55. L. Remontet, service de biostatistique des Hospices Civils de Lyon, A. Buemi, registre des cancers du Haut-Rhin, M. Velten, registre des cancers du Bas- Rhin, E. Jougla, Inserm – Centre d’épidémiologie sur les causes médicales de décès (CépiDc), and J. Estève, service de biostatistique des Hospices Civils de Lyon - Université Claude Bernard Lyon1, “Évolution de l’incidence et de la mortalité par cancer en France de 1978 à 2000.”

59. détection précoce des cancers de la peau par INCA- collection fiche repère novembre 2011

60. HAS, Guide du médecin traitant, stratégie de dépistage précoce du mélanome, novembre 2006

62. INCa : Dépliant Grain de beauté ou mélanome ? Comment faire la différence.
65. Gachon-Buffet J. Analyse du processus diagnostique vis-à-vis d'une lésion pigmentée en pratique dermatologique quotidienne [thèse de médecine]. Marseille: université de la Méditerranée -Faculté de Médecine; 2004
66. www.dermatoscopie.com/
68. Rapport Dermatoscopie pour surveillance cutanée, de la Haute Autorité de santé/Service évaluation des actes professionnels, 2007, PDF, 67p
76. www.uvp5.univ-paris5.fr
77. www.arcagy.org/infocancer/localisations/autres-cancers/melanome/formes-de-la-maladie/la-stadification.html
83. www.canceraquitaine.org
84. Denoix, PF - « Enquête permanente dans les centres anticancéreux » BULL INST NAT HYG 1946. 1:70.
87. www.aimatmelanoma.org
88. Mélanome: un guide pour les patients – Basé sur les recommandations de l’ESMO - v.2013.1
91. HAS / Service maladies chroniques et dispositifs d’accompagnement des malades / INCa / Département des recommandations pour les professionnels de santé, Mélano me cutané - Guide médecin ALD n° 30. 2012.

104 P. B. Chapman, A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto, J. Larkin,

119 Ann Dermatol Venereol 2005 Jan;132(1):50-1. Feasability and tolerance of adjuvant treatment
of melanoma with immunotherapy according to Kirkwood protocol

128. Résumé des caractéristiques du produit YERVOY 5 mg/ml, solution à diluer pour perfusion.

Rapport d'orientation sur les facteurs de retard au diagnostic du mélanome cutané INCa, département dépistage/ HAS, service évaluation économique et santé publique / Juillet 2012

Direction de la recherche, des études, de l'évaluation et des statistiques Sicart D. Les médecins au 1er janvier 2010. série statistiques 2011

Martel J. La "journée de dépistage" a cinq ans : elle est reconduite le 16 Mai 2002 : plus que

161. www.reseau-melanome-ouest.com

173. www.recherche-pierre-fabre.com

192. Agence française de sécurité sanitaire environnementale ; Institut de veille sanitaire ; Agence

195. www1.rfi.fr/francefr/articles/104/article_71291.asp

196. www.capital.fr/enquetes/strategie/cremes-solaires-toutes-contre-l-oreal-955743/(offset)/1

197. www.afnor.org

198. www.economie.gouv.fr/dgccrf/Publications/Vie-pratique/Fiches-pratiques/Produit-de-protection-solaire

200. www.myskinpharmacy.com

206. Progrès en dermato-allergologie. John Libbey Eurotext p 74 et 75

209. Afssaps, Etat des connaissances relatif aux nanoparticules de dioxyde de titane et d’oxyde de zinc dans les produits cosmétiques en termes de pénétration cutanée, de génotoxicité et de cancérigénèse. 2011

211. Foley P, Nixon R, Marks R, Frowen K, Thompson S. The frequency of reactions to sunscreens:

Schalka S, dos Reis VM, Cucé LC. The influence of the amount of sunscreen applied and its sun protection factor (SPF) : evaluation of two sunscreens including the same ingredients at different concentrations. *Photodermatol Photoimmunol Photomed.* 2009 Aug;25(4):175-80

www.parlonscosmetiques.com/qualite_information_obligatoires/

L'Organisation Mondiale de la Santé ; L'indice universel de rayonnement solaire : Guide pratique.

www.ligue-cancer.net/article/342_soleil-et-cancer

www.soleil.info/animation

www.e-cancer.fr/soleilmodeemploi/actualites_contenu2_print.html

www.e-cancer.fr/soleilmodeemploi/actualites_contenu2_print.html

LE MELANOME CUTANE

Quelques chiffres
11 200 nouveaux cas / an en France et une incidence qui ne cesse de croître
10% des tumeurs cutanées mais 75% des décès liés à ce type de tumeurs
âge moyen au diagnostic : 63 ans chez l'homme et 60 ans chez la femme

Qu’est-ce-qu’un mélanome ?
Mélanome : tumeur maligne des mélanocytes
Mélanocytes : cellules présentes dans l'épiderme de la peau qui fabriquent la mélanine
Mélanine : pigment qui colore et protège la peau contre les agressions des ultra-violets
Le grain de beauté (ou nævus) résulte de la multiplication et du regroupement de mélanocytes NORMAUX

Quels sont les facteurs de risque ?
SOLEIL ++++ : des expositions intenses et intermittentes
phototype clair (peau qui rougit et bronze pas ou peu)
cabines de bronzage (surtout avant 35ans)
nombreux grains de beauté
antécédents personnels ou familiaux de mélanome
immunodépression

Quels sont les signes d’alerte ?
• apparition d'une lésion suspecte brune, noire ou rougeâtre, qui évolue rapidement ou change rapidement et qui se développe sur une peau saine
• modification d'un grain de beauté jusqu’à présent stable
CONSULTER SON DERMATOLOGUE EN CAS DE SUSPICION
Que se passe-t-il si le patient suspecte une lésion ?

Consultation chez le dermatologue :
interrogatoire + examen clinique de la peau + dermoscopie
↓
Découverte d'une lésion mélanocytaire suspecte
↓
Exérèse complète de la lésion suspecte
↓
Examen anatomopathologique
pour confirmer le diagnostic de mélanome
↓
Classification pTNM
Annonce du diagnostic au patient
↓
Reprise chirurgicale en fonction de l'épaisseur tumorale (indice de Breslow)
↓
Bilan d'extension (examen clinique +/- examens radiologiques)
pour confirmer le stade = classification TNM
↓
Traitement le mieux adapté :
CHIRURGIE +/- immunothérapie, chimiothérapie, radiothérapie
• Identifier les personnes à risque

exposition chronique au soleil
exposition aux UV artificiels d’autant plus avant 35 ans
antécédents de coups de soleil quelque soit l’âge auquel ils sont survenus
phototype I ou II (peau claire)
nombreuses taches de rousseur
nombreux grains de beauté (>40)
plus de 2 nævus atypiques
nævus congénital géant
antécédents personnels ou familiaux de mélanome

Il faut adresser ces personnes à un dermatologue pour un suivi régulier.

• Identifier une lésion mélanocytaire suspecte=REGLE ABCDE

Si le patient identifie une lésion suspecte, il doit être adressé en urgence à son dermatologue
Le diagnostic précoce, c'est quoi ?

mélanome in situ ou d'épaisseur < 1 mm

Pourquoi le diagnostic précoce est capital ?

il permet des traitements moins lourds et plus efficaces
les chances de survie sont meilleures
sur 100 décès liés à un cancer de la peau 80 sont dus à un mélanome

Qui est concerné par le diagnostic précoce ?

personnes à risque de mélanome (cf fiche identification des personnes à risque)
la population générale

Comment promouvoir le diagnostic précoce ?

l'AUTO-EXAMEN : tous les 3 mois (cf fiche sur l'auto-examen)
ce que les personnes doivent rechercher : grain de beauté modifié
nouvelle tâche foncée
« vilain petit canard »

avec l'aide de la règle ABCDE

CONSULTER DES L'OBSERVATION D'UNE TACHE SUSPECTE !!!!
LES EXAMENS DE SURVEILLANCE

par le dermatologue, le chirurgien ou le médecin traitant

<table>
<thead>
<tr>
<th>Stade de prise en charge du mélanome</th>
<th>Examens complémentaires et la fréquences de consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mélanome in-situ</td>
<td>Un contrôle annuel à vie</td>
</tr>
<tr>
<td>Mélanome stade I</td>
<td>Un examen complet de la peau + palpation des ganglions tous les 6 mois pendant 5 ans puis tous les ans</td>
</tr>
<tr>
<td>Mélanome stade II</td>
<td>Un examen complet de la peau + palpation des ganglions tous les 3 mois pendant 5 ans puis tous les ans</td>
</tr>
<tr>
<td>Mélanome stade III</td>
<td>Idem que le stade II +/- PET-scan, scanner abdomino-pelvien, cérébral ou hépatique, IRM cérébral pendant 5 ans pour rechercher des métastases à distance</td>
</tr>
<tr>
<td>Mélanome stade IV</td>
<td>Idem que le stade III</td>
</tr>
</tbody>
</table>

LES SOINS COMPLEMENTAIRES

la prise en charge de la douleur DOIT ETRE SYSTEMATIQUE

- douleur due à la tumeur elle-même, douleur post-chirurgicale ou post-chimiothérapeutique
- douleur ne doit pas être une fatalité !!!!!

douleurs par excès de stimulation nociceptive

- antalgique de palier I : paracétamol, aspirine, AINS
- antalgique de palier II : codéine, tramadol, néfopam, buprénorphine
• antalgique de palier III : morphine, fentanyl, oxycodone
• +/- co-antalgiques : corticoïdes, topiques locaux type AINS
douleurs neuropathiques
• antiépileptiques : gabapentine, prégabaline, clonazépam, carbamazépine
• anti-dépresseurs tricycliques : amitriptyline, clomipramine

la prise en charge des troubles alimentaires

PREVENTION DE LA DENUTRITION

• sous chimiothérapie le patient peut souffrir d'une modification du goût ou d'un désintérêt pour l'alimentation
• compléments alimentaires hyperprotidiques et hypercaloriques
• ateliers de cuisine dans certains CHU

le soutien psychologique

NE PAS OUBLIER L'ENTOURAGE

• dès le diagnostic puis tout au long de la prise en charge
• orientation vers un professionnel (psychologue ou psychiatre) ou vers un groupe de parole ou des associations de patients
• ne pas oublier l'entourage qui peut être suivi lui aussi
• consultations de maquillage thérapeutique pour estomper cicatrices, lésions cutanées …

les soins palliatifs

AMELIORER LA QUALITE DE VIE

• lorsque la guérison définitive n'est pas envisageable
• soulager les symptômes désagréables, les douleurs physiques et psychiques, les souffrances sociales et spirituelles tout en respectant les choix du malade
• approche globale et pluridisciplinaire
• à domicile ou en institution
LES AIDES AU QUOTIDIEN

l'ALD PRISE EN CHARGE A 100% DES SOINS ET TRAITEMENTS EN RAPPORT AVEC LA MALADIE

- le mélanome est inscrit sur la liste des ALD exonérantes : ticket modérateur supprimé
- forfait hospitalier pas pris en charge par l'Assurance maladie
- médecin traitant remplit le formulaire « protocole de soins » pour demander l'ALD

la vie professionnelle

- un arrêt maladie pendant les traitements + des indemnités journalières pour compenser la perte de revenu
- une reprise à temps partiel (temps partiel thérapeutique) peut être possible
- la maladie ou les traitements peuvent entraîner des séquelles sources d'handicap : reconnaissance comme travailleur handicapé pour avoir un emploi adapté, des aides sociales et financières

connaître ses droits

- la convention AERAS (s'Assurer et Emprunter avec un Risque Aggravé de Santé) permet d'élargir l'accès à l'assurance et à l'emprunt pour les personnes présentant ou ayant présenté un mélanome

DES LIENS ET NUMEROS UTILES

Société Française de Dermatologie
01 43 27 01 56
www.sfdermato.org
Ligue Nationale contre le cancer
0810 111 101
www.ligue-cancer.net

Plateforme Cancer info de l'Institut National du Cancer (INCa)
0810 810 821
www.e-cancer.fr/cancer-info

Santé info droits
0810 00 43 33
www.droitsdesmalades.fr

AERAS : s'Assurer et Emprunter avec un Risque Aggravé de Santé
www.aeras-info.fr

Assurance maladie
www.ameli.fr

Association de patients AMESA : Association Mélanome Sans Angoisse
02 40 89 50 56
www.melanome-amesa.com

Association de patients « Vaincre le Mélanome »
www.vaincrelemelanome.fr
Quels sont les effets nocifs des ultraviolets sur notre peau ?

<table>
<thead>
<tr>
<th>UVA</th>
<th>UVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coup de soleil +</td>
<td>Coup de soleil +++</td>
</tr>
<tr>
<td>Vieillissement cutané ++</td>
<td>Vieillissement cutané +</td>
</tr>
<tr>
<td>CANCERS CUTANES ++</td>
<td>CANCERS CUTANES ++</td>
</tr>
</tbody>
</table>

PHOTOPROTECTION EFFICACE INDISPENSABLE CONTRE LES UVA ET LES UVB !!!

Comment bien choisir le produit de protection solaire ?

CONDITIONS D'EXPOSITIONS

<table>
<thead>
<tr>
<th>Peau extrêmement sensible prenant toujours des coups de soleil lors des expositions solaires</th>
<th>Haute protection 30 - 50</th>
<th>Très haute protection 50+</th>
<th>Très haute protection 50+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peau sensible au soleil prenant souvent des coups de soleil mais pouvant obtenir un hâle</td>
<td>Moyenne protection 20</td>
<td>Haute protection 30 - 50</td>
<td>Très haute protection 50+</td>
</tr>
<tr>
<td>Peau intermédiaire prenant des coups de soleil que lors d'expositions intensives</td>
<td>Faible protection 10</td>
<td>Moyenne protection 20</td>
<td>Haute protection 30 - 50</td>
</tr>
<tr>
<td>Peau assez résistante bronzant facilement sans prendre de coups de soleil</td>
<td>Faible protection 10</td>
<td>Faible protection 10</td>
<td>Moyenne protection 20</td>
</tr>
</tbody>
</table>
Quelle forme de présentation choisir ?

- le visage et le cou : crème émulsion
- le corps : lait, spray, gel
- les lèvres, le nez et les contours des yeux : stick
- les cicatrices : stick 50+

Quelle photoprotection pour quel patient ?

Meilleure photoprotection = éviction solaire + port de vêtements couvrants

Photoprotection de l'adulte

- Respecter des règles simples « de bon sens »

éviter l'exposition solaire entre 12h et 16h
protéger ses yeux avec des lunettes et mettre un chapeau
se réhydrater régulièrement
s'exposer progressivement

- Eviter l'usage de substances photosensibilisantes

en externe : déodorants, parfums ou huiles essentielles de bergamote, millepertuis, citron ou lavande, corticoïdes …
en interne : sulfamides, téltracyclines, phénothiazides …

- Appliquer le produit de protection solaire

en complément de ces règles de « bon sens » pour une protection efficace
environ 7 cuillères à café pour tout le corps
en couche uniforme sur toutes les zones exposées
30 min avant l'exposition
renouveler toutes les 2h et après chaque baignade ou sudation
Photoprotection de l'enfant

Ne jamais exposer un enfant de moins de 24 mois directement au soleil !!!

- port de vêtements et d’accessoires protecteurs adaptés (chapeau à bord large, lunettes enveloppantes, T-shirt anti-UV)
- limiter le temps d'exposition
- crème résistante à l'eau avec un filtre minéral : protection homogène dans tout le spectre UV et limite le risque allergique

Photoprotection de la femme enceinte

- produit de protection solaire d'indice élevé (30-50+) , pour éviter le masque de grossesse, avec un filtre minéral pour éviter la diffusion du produit dans la peau

Photoprotection du sujet atteint d'une photodermatose

- produit de protection solaire d'indice élevé (30-50+)
 - si photodermatose UVA : lucite bénigne, dermite actinique chronique, photosensibilité médicamenteuse → photoprotection UVA
 - si photodermatose en poussée (peau eczématuse) → filtre minéral
+ photothérapie + photoprotection vestimentaire
ABSTRACT

Pharmacy councils to promote the early diagnosis and melanoma prevention

The melanoma is a malignant tumor who grows up in place of the melanocytes. It represents today a major issue of public health because his incidence is in constant increase and it's the most aggressive way of cutaneous cancer. Indeed, in case of late diagnosis, in spite of news therapeutics, his treatment is just palliative. The pharmacist have to sensitize his patients at the early diagnosis, only way avaible today to cut back the mortality. To improve his patients' education, the pharmacist insists on the self review with the ABCDE rule and on the regularity of appointements dermatological from the riskly people. The other side of the melanoma prevention is the photoprotection because 3 melanomas on 4 are dues to an intense solar exposition especially at sun strikes during childhood. The pharmacist has an essential role in the melanoma prevention insisting on the photoprotection for youngest people, knowing that the best photoprotection stays the solar eviction and wearing covering clothes. Adapt his solar behaviour at his skin type allows to protect ourselves against UV.
Le mélanome est une tumeur maligne qui se développe aux dépens des mélanocytes. Il représente aujourd'hui un enjeu majeur de santé publique puisque son incidence est en constante augmentation et il est la forme la plus agressive de cancer cutané. En effet, en cas de diagnostic tardif, malgré les nouvelles thérapeutiques son traitement n'est que palliatif. Le pharmacien doit sensibiliser ses patients au diagnostic précoce, seul moyen disponible aujourd'hui pour réduire la mortalité. Pour parfaire l'éducation de ses patients le pharmacien insiste sur l'auto-examen avec la règle ABCDE et sur la régularité des consultations dermatologiques des personnes à risque. L'autre volet de la prévention du mélanome est la photoprotection puisque 3 mélanomes sur 4 sont dus à une exposition solaire intense notamment à des coups de soleil pendant l'enfance. Le pharmacien a un rôle essentiel dans la prévention du mélanome en insistant sur la photoprotection dès le plus jeune âge tout en sachant que la meilleure photoprotection reste l'éviction solaire et le port de vêtements couvrants. Adapter son comportement solaire à son type de peau permet de se protéger des UV.