LE TRAITEMENT DES PETITES TUMEURS DU REIN :
UNE ANALYSE COUT-EFFICACITE

Directeur de thèse : Monsieur le Professeur Bernard Malavaud
TABLE DES MATIÈRES

- TABLE DES ABBREVIATIONS 2
- INTRODUCTION 3

PREMIERE PARTIE :

I- L’adénocarcinome du rein. 4
II- Le traitement chirurgical. 5
III- Les traitements thermo-ablatifs :
 a. La cryothérapie. 8
 b. La radiofréquence. 13
IV- La surveillance. 15

DEUXIEME PARTIE :

I- Matériel et méthode :
 a- Population. 17
 b- Techniques. 19
 c- Données économiques. 20
 d- Analyse statistique. 22
II- Résultats :
 a. Efficacité à 1 an. 23
 b. Complexité et traitement. 23
 c. Complexité et efficacité. 25
 d. Corrélation RENAL-NS / PADUA score. 26
 e. Complexité et morbidité. 27
 f. Analyse cout-eficacité. 29
III- Discussion. 31
 a. Résultats oncologiques et fonctionnels. 31
 b. Analyse cout-eficacité. 38

CONCLUSION 50

BIBLIOGRAPHIE 51

ANNEXES 56
TABLE DES ABBREVIATIONS

PTR : petite tumeur du rein.

NPO : néphrectomie partielle ouverte.

NPC : néphrectomie partielle coelioscopique.

NPCR : néphrectomie partielle coelioscopique robot-assistée.

RF : radiofréquence.

CT : cryothérapie.

GHS : groupe homogène de soin.

GHM : groupe homogène de malade.

SSR : survie sans récidive.

RENAL-NS : RENAL nephrometry score.

PADUA : preoperative aspects and dimensions used for an anatomical score.
INTRODUCTION

L’incidence du cancer du rein est en augmentation constante dans les pays développés depuis trente ans. [1]

L’utilisation de plus en plus banale de l’imagerie en coupe permet de découvrir de façon fortuite des petites tumeurs de rein, classées T1 dans la classification TNM.

La mortalité par cancer du rein reste stable.

Le développement de l’entité « petite tumeur du rein » intervient dans un contexte de diminution de l’acceptation par la population générale de la morbi-mortalité thérapeutique même dans le cadre du traitement du cancer, surtout pour des maladies asymptomatiques au moment du diagnostic.

Le système de soins français est basé sur une prise en charge complète de tous les soins liés au cancer. L’innovation en santé se traduit souvent par une augmentation des couts diagnostiques et thérapeutiques et pose le problème de sa prise en charge par la collectivité. Les médecins, seuls à même d’évaluer l’efficacité des soins doivent aussi tenir compte des aspects économiques des progrès technologiques afin d’éclairer l’assurance maladie sur l’évolution des pratiques et la nécessaire réévaluation de leur remboursement.

A la lueur de l’expérience acquise au CHU de Toulouse, l’objectif primaire de cette étude est de calculer le coût du traitement des petites tumeurs du rein, afin d’en apprécier la rentabilité pour un établissement de santé qui investit dans l’innovation.

L’objectif secondaire est d’évaluer la pertinence de l’utilisation des scores de complexité anatomique (PADUA score et RENAL score) comme éléments associés au succès thérapeutique.
PREMIERE PARTIE

I- L’ADENOCARCINOME DU REIN

L’incidence du cancer du rein augmente de 2% par an, il représente 3% des tumeurs malignes et est le troisième cancer urologique après le cancer de prostate et le carcinome urothélial de vessie. [2, 3]

En 2013, aux Etats-Unis, 65 150 nouveaux cas seront diagnostiqués et 13 680 décès spécifiques surviendront (vs 58 240 nouveaux cas et 13 040 décès en 2010).[3, 4]

Le sex ratio est de 2 hommes pour une femme.

Les facteurs de risques connus sont le tabac, l’obésité, l’hypertension artérielle, les formes familiales et la dialyse depuis plus de 3 ans.[1]

L’accessibilité grandissante de l’imagerie médicale et la diffusion de celle-ci dans tout type de symptomatologie permet la découverte fortuite de plus de 50% des cancers du rein.[5]

Les lésions découvertes de cette façon sont dans l’immense majorité des cas des lésions de moins de 4 cm ou de moins de 7 cm, soit les stades T1a et T1b de la classification TNM.

Il est alors possible d’identifier un sous-groupe dans le cancer du rein : « les petites tumeurs du rein (PTR) » dont la définition est la présence d’une masse à l’intérieur du rein, dont la plus grande dimension est inférieure à 4 cm et qui se réhausse à l’injection de produit de contraste.[6]

Les PTR ne sont pas pour autant dénuée d’agressivité car 5,2% d’entre elles sont métastatiques au diagnostic. Le risque métastatique augmente de 3,5 % pour chaque centimètre de tumeur supplémentaire [7]. Sauf exception, un traitement curatif doit être proposé au patient.

En France, la survie à 5 ans dans le cancer du rein est de 68,4% tous stades confondus et atteint 90% pour les PTR.[8]
Ces données épidémiologiques ont permis aux sociétés savantes françaises, européennes et américaines de mettre au point des recommandations spécifiques pour la prise en charge des petites tumeurs du rein. [9-11]

Actuellement, le traitement de référence est la néphrectomie partielle, les traitements thermo-ablatifs étant optionnels et réservés aux patients présentant des comorbidités importantes, sur rein unique ou présentant des maladies génétiques prédisposant aux récidives multiples.

II- LE TRAITEMENT CHIRURGICAL

La néphrectomie élargie (NE) est le traitement chirurgical historique du cancer du rein.

Ce dogme a été remis en cause par la mise en évidence d'un risque augmenté d'insuffisance rénale chronique après néphrectomie élargie et par la démonstration d'un risque de mortalité cardio-vasculaire accru du fait d'une insuffisance rénale chronique. [12, 13]

La chirurgie d'épargne néphronique était réservée jusque là aux patients porteurs d'un rein unique anatomique ou fonctionnel, d'une pathologie rénale controlatérale compromettant le débit de filtration glomérulaire futur, de tumeurs bilatérales ou de prédisposition génétiques favorisant la survenue de tumeurs controlatérales.[14]

Les résultats de l'étude de phase III EORTC publiés en 2010 ne montrent pas de différence significative en terme de survie globale entre la néphrectomie élargie et la néphrectomie partielle.[15]

Ces résultats oncologiques sont confortés par de nombreuses séries dont celle de Becker et al qui retrouvent des survies spécifiques à 5 et 10 ans de 97,8% et 95,8% pour des patients traités par néphrectomie partielle pour des T1a.[16, 17].

Patard et al montre la faisabilité et l'efficacité de la néphrectomie partielle pour tous les T1.[17]
Les excellents résultats oncologiques de la néphrectomie partielle s’accompagnent d’une diminution du taux d’insuffisance rénale chronique post-opératoire (12% vs 22%) [18] mais également d’une diminution du taux d’événement cardio-vasculaire et de mortalité globale par rapport à la NE.[19]

Le reproche majeur fait à la néphrectomie partielle notamment lorsqu’on la compare aux techniques thermo-ablatives est la morbidité péri-opératoire avec des taux de complications plus importants dans les séries de NP par rapport à la NE, complications hémorragiques : 3,1% contre 1,2%, survenue de fistules urinaires : 4,4%, reprise chirurgicale 4,4% contre 2,4% [15].

Le défi chirurgical au cours de la NP résulte de la nécessité d’une résection tumorale complète associée à une reconstruction du parenchyme rénal ou rénorraphie dans un temps d’ischémie minime.

Voie d’abord par laparotomie, laparoscopie, plus ou moins robot-assistée, tout est affaire d’école, les recommandations des sociétés savantes orientent vers la néphrectomie partielle ouverte (NPO) et réservent la laparoscopie (NPC) pour les centres experts.

En effet si l’absence de différence significative entre la NPO et la NPC en terme de survie globale et de survie sans métastase est prouvée, la coelioscopie est associée à un temps d’ischémie chaude et un taux de complications plus important que la NPO. Par contre la durée opératoire, les pertes sanguines et la durée de séjour sont réduites dans la NPC. [20]

L’approche robotique fournit au chirurgien de nombreux outils permettant de mieux appréhender les contraintes liées à la NPC (la vision 3D, les degrés de liberté des bras robotisés)[21]. Les premières études semblent montrer des résultats au moins comparables à la NPC [22, 23]. Wang et al ont publié la plus grande série comparant NPCR et NPC montrant un temps d’ischémie, des pertes sanguines et des durées de séjour moindres en faveur de la NPCR[24]. Ces résultats restent à confirmer par d’autres essais randomisés comparant coelioscopie pure et robot-assistée.
De nos jours, encore trop de néphrectomies élargies sont réalisées pour des PTR alors qu’elles seraient accessibles à une chirurgie partielle. Il faut encourager la chirurgie d’épargne néphronique en assurant une formation adéquate aux urologues confrontés à cette pathologie. [25]

Et ce d’autant plus que des techniques mini-invasives, percutanées thermo-ablatives font leurs preuves en terme de tolérance et de résultats oncologiques et fonctionnels à moyen terme.

III- LES TRAITEMENTS THERMO-ABLATIFS.

Loin d’être un concept récent, la possibilité de traitement tumoral par le froid, le chaud ou toute autre sorte d’énergie est testée depuis longtemps.

Ces traitements thermo-ablatifs sont représentés par la cryothérapie, la radiofréquence, les ultra-sons focalisés, la thermothérapie par micro-ondes et l’ablation laser.

Les indications sont actuellement restreintes aux tumeurs de moins de 4 cm et aux patients:

- porteurs de comorbidités importantes, en faisant de mauvais candidats à la chirurgie, et/ou
- porteurs de rein unique anatomique ou fonctionnel, et/ou
- présentant des tumeurs bilatérales, et/ou
- porteurs de maladies familiales responsables de tumeurs bilatérales et récidivantes.

Les avantages de ces techniques sont la facilité de réalisation, une meilleure tolérance, de moindres complications et une durée de séjour plus courte.
Les inconvénients sont l'absence de contrôle histologique des marges de traitement, la difficulté d'interprétation des examens radiologiques de surveillance et des taux de récidive locale plus importants que pour la néphrectomie partielle sans que cela influe sur la survie globale et la survie sans progression.[5]

Les procédés les mieux connus et présentant un recul suffisant sont la cryothérapie et la radiofréquence.

A-LA CRYOTHERAPIE

La première utilisation de la cryothérapie comme outil de traitement du cancer remonte au 19ème siècle par le Dr James Arnott. Il affirme alors que la congélation stoppe l'inflammation et détruit la vitalité des cellules cancéreuses et pourrait au stade précoce exercer une action curative.[26]

Avant les années 1960, la cryothérapie était utilisée principalement en dermatologie et en gynécologie pour traiter des lésions superficielles. L'une des premières applications de la cryothérapie en urologie est le traitement de l'hypertrophie bénigne de prostate.[27]

L'introduction par Cooper et Lee d'un système capable de délivrer du nitrogène liquide à travers une aiguille de type trocart, a permis de traiter des lésions plus profondes. Toutes les futures cryosondes s'inspirent de ce prototype.[28]

Le calibre des cryosondes obligeait à une voie d'abord chirurgicale puis le nitrogène liquide est remplacé par du gaz argon à haute pression. La décompression brutale d'un gaz entraine une chute de température, c'est l'effet Joule-Thomson. La décompression du gaz Argon de 245 bars à la pression atmosphérique produit une température de -110°C. L'utilisation de ces nouveaux gaz aboutit à une congélation plus rapide et garantit un meilleur contrôle de la température.[29]
L’argon en phase gazeuse a permis une miniaturisation des sondes jusqu’à un diamètre de 17 gauges (1,47 mm) rendant la voie percutanée radioguidée possible.

La mort cellulaire est obtenue pour des températures entre -19,4°C et -40°C [30]. Ce phénomène est temps et température dépendant.
Plusieurs cryosondes sont nécessaires pour traiter une même lésion.
La boule de glace formée à l’extrémité de la sonde représente la zone traitée et est visible en tomodensitométrie (TDM) lors du traitement. La température à la limite de la boule de glace est de 0°C, la température létale est retrouvée à 3,1 mm en dedans des limites de la boule de glace.[31]
Un double cycle de congélation entrecoupé d’une phase de réchauffement passif permet d’augmenter la zone de nécrose.

Le mode d’action cellulaire de la cryothérapie est double :
- des lésions cellulaires directes sont obtenues lorsque les cristaux de glace se forment dans le secteur extracellulaire entraînant un gradient osmotique et une déshydratation intracellulaire. Puis le réchauffement passif permet la réentrée d’eau intracellulaire qui se cristallise lors du deuxième cycle de congélation entraînant une rupture de la membrane cellulaire et une apoptose, [32, 33] et
- un effet différé lié à l’ischémie par stase vasculaire au sein de la microvascularisation est supposé être le mécanisme principal de la cryothérapie. Il se produit lors de la phase de réchauffement. Après celui-ci, on constate une activation plaquettaire et de l’hémostase entraînant la formation de microthrombi et une occlusion micro vasculaire à l’origine d’une hypoxie cellulaire et d’une mort cellulaire.[32, 33]

Le traitement d’une lésion rénale par cryothérapie est possible par abord chirurgical ou par voie percutanée, sous guidage échographique ou bien scannographique, sous anesthésie générale ou loco-régionale.
Les conditions d’efficacité sont :
- atteindre la température létale,
- temps passé à la température létale suffisamment long,
- vitesse de congélation rapide et
- vitesse de réchauffement lente.

L’efficacité du traitement est jugée par la prise de contraste de la lésion à l’imagerie injectée de contrôle.

Les résultats oncologiques à long terme de la cryothérapie commencent à être publiés, par voie laparoscopique, les taux de survie spécifique sont de 92% à 5 ans, 83% à 10 ans [34]. Par voie percutanée, les résultats sont à 5 ans et montrent des taux de survie sans récidive de 90%. [35]

La cryothérapie n’est pas dénuée de complications. En effet, Tsivian et al, retrouvent des taux de complications respectifs de 14% et 21% pour la cryothérapie laparoscopique et la cryothérapie percutanée. [36]

De plus, le taux d’échec de la cryothérapie est plus important par voie percutanée (9% vs 3,1%). [37]

Comparée à la radiofréquence, la cryoablation offre plusieurs avantages majeurs :[29]
- la visualisation optimale et les limites nettes de la boule de glace, lors du guidage scanographique permettent d’adapter précisément la glace à la forme et à la taille de la tumeur, tout en contrôlant l’absence de contact avec les structures vulnérables voisines. Par opposition, le contrôle de la dispersion de chaleur lors du traitement ablatif par radiofréquence reste très approximatif.

- plusieurs sondes de cryoablation peuvent être activées simultanément et fonctionner de manière synergique pour traiter de larges tumeurs en une seule application. Au contraire, une seule électrode peut être activée avec la plupart des générateurs de radiofréquence, dans ce cas, le traitement de larges tumeurs requiert des repositionnements de l’électrode qui peuvent conduire à un traitement incomplet.
- le traitement de tumeurs en position centrale apparaît plus sécurisé lorsque la cryoablation est utilisée. En effet, le risque de lésions thermiques sur le système collecteur (fistules urinaires, sténose thermo-induite de la jonction pyélo-urétérale) devient élevé lorsque l'électrode de radiofréquence s'approche trop du sinus rénal. Au contraire, la cryoablation réduit ces risques car la couche de tissu conjonctif supportant l'urothélium n'est pas détruite par la glace. Cela a bien été démontré dans plusieurs études animales où les auteurs ont volontairement étendu la glace sur les fonds de calices [38]. Ces constatations ont été confortées par les résultats de Warlick et al. [39], qui font état de six patients sans complication urinaire malgré l'extension de la glace sur le système collecteur. Malgré tout, une attention particulière doit être prise pour traiter les tumeurs proches de la jonction pyélo-urétérale du fait du risque de sténose ischémique secondaire.

- concernant la douleur, la cryoablation est mieux tolérée que la radiofréquence. Si cet avantage est majeur lors de traitement de tumeurs douloureuses (typiquement les métastases osseuses), cette différence apparaît de moindre importance lors du traitement de tumeurs rénales. Cependant une baisse substantielle du niveau d'analgésie per- et postprocédurale est retrouvée.

- lors du suivi par imagerie, la rétraction progressive de la zone d'ablation est plus marquée après cryoablation du fait de la résorption progressive des caillots centraux. Cette rétraction de la cryolésion est un critère important de succès carcinologique, particulièrement lors d'ablation de tumeurs hypovasculaires.
Figure 1: Cryodes intra-tumoraux et « boule de glace »

Figure 2: « boule de glace » visualisée per-procédure.
B- LA RADIOFREQUENCE

La radiofréquence (RF) repose sur l’application d’un courant alternatif de 350 à 480 kHz à partir d’une électrode insérée dans la tumeur. L’agitation ionique entraîne un échauffement par friction de la tumeur au-delà de 55°C, température considérée comme létales pour les cellules [40].

Elle aboutit à la formation d’une nécrose de coagulation. Pour être carcinologiquement efficace, la température létale doit être atteinte dans tout le volume tumoral et si possible au-delà, afin de créer une marge de sécurité de quelques millimètres.

L’énergie appliquée peut varier de 30 W à plus de 250 W selon les générateurs utilisés.[40]

Plusieurs électrodes sont utilisables, droite unique ou multiples, déployable avec aiguille coaxiale, système de refroidissement, utilisant un courant monopolaire ou bipolaire.

Les résultats oncologiques disponibles sont publiés avec un suivi moyen de 5 ans. En 2007, Zagoria et al retrouvent des taux de survie sans récidive après RF de 88% à 5 ans, 12% de récidives sont observées pour des tumeurs de plus de 4 cm[41, 42]. En 2012, Olweny rapporte une survie spécifique à 5 ans autour de 97,2% et une survie sans récidive de 89,2%.[43]

Chaque centimètre de tumeur supplémentaire à partir de 3,6 cms divise le pourcentage de survie sans récidive par 2,19, mais une séance supplémentaire de RF ne s’accompagne pas de complication ou de difficulté de réalisation surajoutée.[41]

La littérature rapporte entre 0 et 11% de complications avec la technique de RF percutanée, la majorité sont de grade de Clavien 1 et 2 et sont représentées par une atteinte sensitivo-motrice de la paroi abdominale antérieure. Dans le cas de complications plus sévères, on retrouve les complications hémorragiques (5%), les fistules urinaires (1%), et les sténoses des voies urinaires supérieures (1%).[40]
Il n'y a actuellement aucun critère clairement identifié qui permette d'évaluer ou de mesurer l’efficacité instantanée de la RF.

L’évolution de la lésion traitée est contrôlée par TDM ou IRM. Il est clair que l’efficacité de la RF est difficile à apprécier car il existe une fibrose qui n’évolue pas et dont le critère essentiel est l’absence de rehaussement[44].

Malgré tout, le succès du traitement est représenté par l’absence de rehaussement à l’injection de produit de contraste à l’endroit de la RF.

Ce critère est toutefois imparfait comme l’a montré une étude récente qui trouvait une tumeur viable après RF malgré l’absence de rehaussement.[45]

La persistance de tissu viable après radiofréquence, appelée « skipping », a également été retrouvée par Klingler.[46]
IV- LA SURVEILLANCE

La surveillance active trouve ses fondements dans deux constats. L’incidence des PTR progresse de 2 à 3% par an et malgré un traitement précoce de plus en plus fréquent la mortalité par cancer du rein ne varie pas depuis 30 ans. La population mondiale vieillit, les patients souffrant de cancer du rein sont souvent porteurs de comorbidités importantes.

Il est donc licite de se demander si tous les patients porteurs de PTR vont tirer avantage du traitement curatif de leur maladie.

Une méta-analyse des tumeurs cliniquement localisées a déterminé un taux de croissance médiane globale de 0,28 cm par an pour les lésions sous surveillance active à travers de multiples séries, bien que les taux de croissance varient considérablement entre 0,09 à 0,86 cm par an. [47]

En outre, 26% à 33% des PTR montrent une absence de croissance lorsqu’elles sont observées pendant une durée médiane de 29 mois.[48]

Avec seulement trois cas (1%) de progression métastatique rapportée dans la littérature de surveillance active, il est difficile d’établir avec précision la vitesse à laquelle le cancer du rein cliniquement localisé progresse en maladie métastatique lors d’une surveillance active.[5]

Kunkle, dans sa méta analyse ne retrouve pas de différence significative en terme de progression métastatique entre le traitement curatif, toutes modalités confondues, et la surveillance.[5]

Lane et al ne retrouvent pas d’amélioration de la survie globale entre la néphrectomie totale et la surveillance active chez les patients de plus de 75 ans.[49]

Les facteurs prédictifs de mortalité après traitement de PTR par chirurgie d’épargne néphronique sont reliés à l’âge et aux comorbidités mais pas à la maladie.[50]
Pour autant il n'existe aucun critère prédictif de la malignité et de l'agressivité des PTR, ce qui limite les indications de la surveillance active.

La surveillance active comprend l'évaluation initiale de la lésion par imagerie et anatomopathologie, le traitement spécifique retardé n'est réservé qu'aux tumeurs progressant pendant la surveillance. Les critères d'exclusion de la surveillance sont un temps de doublement inférieur à 12 mois et/ou un volume atteignant les 4 cm et/ou les maladies symptomatiques.

Figure 5 : Arbre décisionnel devant une PTR [11]
DEUXIEME PARTIE

I- MATÉRIELS ET MÉTHODES

A- POPULATION

162 patients ayant bénéficié du traitement à visée curative d'une PTR par néphrectomie partielle, radiofréquence ou cryothérapie entre septembre 2009 et décembre 2011 et présentant un TDM ou une IRM pré-opératoire ont été inclus dans l'étude.
Les données ont été recueillies rétrospectivement grâce au dossier médical personnel informatisé.
Les scores radiologiques ont été calculés par la même personne après importation des examens réalisés hors CHU sur le réseau d'imagerie du CHU Toulouse.

La population est décrite par le sexe, l'âge au moment du traitement, le score OMS, le RENAL nephrometry score, le PADUA score, le type d'intervention, l'anatomopathologie, les complications et le résultat à 1 an.

Le RENAL-NS est un outil d'évaluation anatomique des lésions rénales à partir d'imagerie en coupe. Il comprend plusieurs critères dont la somme indique la complexité lésionnelle:

-R ou radius : taille de la lésion dans son plus grand axe. Les points sont attribués selon que la taille soit < à 4cm, comprise entre 4 et 7 cm ou > à 7 cm.

-E : les points sont attribués en fonction du caractère exophytique, <50% endophytique ou entièrement endophytique de la lésion.

-N ou nearness : distance entre la partie la plus profonde de la tumeur et le système collecteur et /ou le sinus. 1 point est attribué à une lésion à plus de 7 mm et 3 points pour une lésion à moins de 3 mm de cette limite.

-A : antérieur, postérieur ou médian (x).

-L : localisation par rapport à la ligne des pôles.

-h : suffixe rajouté pour signaler une lésion hilare.
La somme de ces éléments permet de classer la complexité lésionnelle en trois groupes, faible complexité pour des scores entre 4 et 6, complexité moyenne entre 7 et 9, complexité élevée pour des scores supérieurs à 10. Sont alors ajoutés les suffixes a,p,x ou h[51].

Cet outil a été développé en 2009 par l’équipe de Kutikov (Fox Chase Cancer Center, Temple University School of Medicine, Philadelphia, Pennsylvania) dans le but de standardiser la description des tumeurs du rein et d’aider à la décision dans le choix du traitement.[51].

La même année, l’équipe de Padoue publie sa Preoperative Aspects and Dimensions Used for an Anatomical classification, dont le but est de prédire le risque de complication après néphrectomie partielle[52]. Cette classification prend en compte 6 critères auxquels sont attribués également des points [52]:

- localisation longitudinale : lésion polaire ou médiorénale.
- le caractère exo ou endophytique de la tumeur.
- localisation transversale : lésion latérale ou médiane.
- le rapport avec le sinus.
- le rapport avec le système collecteur.
- la taille tumorale : avec les mêmes seuils en mm que le RENAL-NS.
- localisation sagittale : ajout du suffixe « a » pour les lésions antérieures et « p » pour les postérieures.
Les caractéristiques de la population sont présentées dans le tableau 1.

<table>
<thead>
<tr>
<th>N=162</th>
<th>NP (92)</th>
<th>RFA (48)</th>
<th>CT (22)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (méd)</td>
<td>62</td>
<td>70</td>
<td>68</td>
<td>p=0,0002</td>
</tr>
<tr>
<td>Sexe (méd)</td>
<td>1,61</td>
<td>1,7</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>OMS (méd)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RENAL-NS (méd)</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>p=0,0031</td>
</tr>
<tr>
<td>PADUA (méd)</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>p=0,0041</td>
</tr>
<tr>
<td>Anatomopathologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Malin</td>
<td>78 (84,8%)</td>
<td>25 (52,1%)</td>
<td>11 (50%)</td>
<td></td>
</tr>
<tr>
<td>- Bénin</td>
<td>14 (15,2%)</td>
<td>9 (18,7%)</td>
<td>1 (4,5%)</td>
<td></td>
</tr>
<tr>
<td>- NR</td>
<td>14 (29,2%)</td>
<td>10 (45,5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 0</td>
<td>66 (71,7%)</td>
<td>38 (79,2%)</td>
<td>16 (72,7%)</td>
<td></td>
</tr>
<tr>
<td>- grade 1</td>
<td>11 (11,9%)</td>
<td>8 (16,7%)</td>
<td>4 (18,2%)</td>
<td>p=0,012</td>
</tr>
<tr>
<td>- grade 2</td>
<td>5 (5,4%)</td>
<td>2 (4,1%)</td>
<td>1 (4,1%)</td>
<td></td>
</tr>
<tr>
<td>- grade 3</td>
<td>8 (8,7%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>- grade 4</td>
<td>1 (1,1%)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>- grade 5</td>
<td>1 (1,1%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SSR à 1 an</td>
<td>95,5%</td>
<td>84,4%</td>
<td>60%</td>
<td>p=0,0001</td>
</tr>
</tbody>
</table>

Tableau 1 : sous-groupes comparés par l'analyse de la variance (ANOVA).

B- TECHNIQUES

Les options thérapeutiques ont été proposées au patient après présentation du dossier en réunion de concertation pluridisciplinaire d'onco-urologie.
Les néphrectomies partielles ont été réalisées selon 3 modalités : ouverte (NPO), coelioscopie (NPC) ou coelioscopie robot-assistée (NPCR).

Une biopsie était recommandée avant le traitement thermo-ablatif, elle pouvait être réalisée le même jour que le traitement.

La radiofréquence a été réalisée par voie percutanée scannoguidée sous anesthésie locale et bloc paravertébral. Le générateur utilisé est le modèle RF 3000 de Boston Scientific, chaque patient a été traité grâce à une électrode monopolaire déployable de type LeVeen (Boston Scientific) avec aiguille coaxiale.

La cryothérapie a été également réalisée par voie percutanée, sous contrôle scanner, sous anesthésie locale et bloc paravertébral. Le système Seednet (Galil Medical) déclenchait l’envoi de gaz de congélation et de décongélation vers l’extrémité de l’aiguille. Les cryosondes utilisées étaient de type IceRod (Galil Medical), de calibre 17 gauges. Le système Seednet était actionné par des gaz argon et hélium à haute pression.

Le traitement consiste en 2 cycles de congélation de 10 minutes entrecoupés d’une phase de réchauffement passif de 8 minutes.

Le monitoring de la formation de la boule de glace avait lieu en temps réel par des coupes scanner sans injection de produit de contraste.

C- DONNÉES ÉCONOMIQUES

Nous avons réalisé une étude cout-efficacité du traitement des PTR au CHU de Toulouse. Sur la population précédemment décrite, nous avons recherché pour chaque patient l’ensemble des couts de son séjour. Il comprenait, le salaire des médecins (chirurgien,
anesthésiste, radiologue), l'hôtellerie, l'imagerie, la biologie, le cout horaire d'utilisation du bloc opératoire ou du scanner, le matériel chirurgical ou radiologique, le suivi à 1 an. Nous avons alors calculé la moyenne du cout global pour une néphrectomie partielle ouverte, par coelioscopie pure ou robot-assistée, pour une radiofréquence percutanée ou pour une cryothérapie percutanée.

Les données économiques ont été recueillies en collaboration avec l'administration hospitalière pour le pôle Urologie-Néphrologie-Plastie du CHU Toulouse.

La mesure des coûts est restreinte à la prise en compte du coût complet (ou coûts directs médicaux) de l'hospitalisation initiale et des complications et ré-hospitalisations avec un suivi de 1 an post-opératoire.

Les coûts non directement attribuables au séjour (coûts intangibles ou liés à la structure) n'ont pas été évalués.

La valorisation du traitement est représentée par le GHS ou par le GHM en version 11D de la classification actuellement en vigueur et calculée à partir de l'échelle nationale des coûts 2008.

L’analyse des informations administratives et médico-économiques (diagnostics, actes réalisés, co-morbidités éventuelles...) fournies par le PMSI permet de classer le séjour de chaque patient au sein d'un Groupe Homogène de Malades (GHM). Chaque GHM se voit ensuite associé à un tarif opposable à l'assurance maladie obligatoire (le GHS, pour Groupe Homogène de Séjours). Ces tarifs sont nationaux et publiés par Arrêtés annuels du Ministre en charge de la Santé.

L’échelle nationale des coûts est un outil qui permet de connaître le coût moyen de chaque GHM, pour les GHM ayant plus de 30 séjours, hors coûts de structure. Les coûts sont calculés à partir des coûts réels déclarés par les établissements validés, publics ou privés, participant à la réévaluation régulière des GHM.

Le coût complet présenté par GHM dans les référentiels est donc une moyenne de coûts qui peut varier de façon importante suivant les établissements pour des raisons d’organisation interne, de techniques employées etc...
Après obtention du cout moyen par traitement, nous avons calculé la valorisation moyenne par type de prise en charge, nous avons obtenu la rentabilité moyenne en soustrayant le cout moyen à la valorisation moyenne.

D- ANALYSE STATISTIQUE

Les tests statistiques ont été effectués sur la population en intention de traiter. Les variables descriptives ont été comparées par une analyse de la variance. Les variables quantitatives ont été comparées par le test du Chi2 de Pearson et le test exact de Fisher. Une différence significative était représentée par un p<0,05. Le test de corrélation de Spearmann a été utilisé pour comparer le RENAL-NS et la classification de PADUA. L’analyse statistique a été réalisée grâce au logiciel DM 90 (Docteur JP Charlet, Service d’épidémiologie et d’évaluation, université Paul Sabatier Toulouse).

II- RESULTATS

162 patients ont été inclus dans l’étude, 100 hommes et 62 femmes (SR = 1,61). L’âge médian au moment du traitement est 65 ans. 67,2 % des patients étaient OMS 0 et 1.

92 patients ont bénéficié d’une néphrectomie partielle, 22 par laparotomie, 37 par coelioscopie pure et 33 par coelioscopie robot-assistée. 48 patients ont été traités par radiofréquence et 22 par cryothérapie.
A- EFFICACITE À 1 AN

Le succès thérapeutique a été défini comme l’absence de récidive locale ou à distance. Le suivi a été poursuivi jusqu’à un an. Deux patients présentant des tumeurs multiples dans le cadre de maladie de Von-Hippel-Lindeau ont été considérés comme des succès du fait que le traitement thermo-ablatif de la lésion en question a été complet.

Tous traitements confondus, la survie sans récidive (SSR) est de 87,7% avec pour la NP, la RF et la cryotherapie des valeurs de SSR de 95,5%, 84,4% et 60% (p=0,0001). En comparant deux à deux les traitements, le test exact de Fischer retrouve une supériorité de la chirurgie sur la cryothérapie (OR= 14,3, p< 0,00001), sur la radiofréquence (OR= 3,961, p=0,026) et une supériorité de la RF sur la cryothérapie (p=0,03).

B- COMPLEXITE ET TRAITEMENT

Nous avons mesuré la complexité des lésions en utilisant le R.E.N.A.L-NS score et le PADUA score.

Le RENAL-NS permet de créer 3 sous-groupes de complexité en fonction de la somme de ses composants :[51]

- complexité faible : de 4 à 6 (68/162).
- complexité moyenne : de 7 à 9 (73/162).
- complexité forte : de 10 à 12 (21/162).

Dans notre population, la médiane du RENAL-NS était de 7.

En l’absence de seuil proposé par l’auteur, l’effectif a été réparti en quartile selon le PADUA score,

-25% de la population avait un PADUA inférieur ou égal à 7, nous considérons ce sous-groupe comme étant de complexité faible.
-50% de la population était comprise entre 8 et 9, c’est le groupe de complexité moyenne.
-25% de la population avait un PADUA score ≥ 10, nous considérons ce sous-groupe comme étant de complexité élevée.
La médiane du PADUA score était de 8.

En analyse rétrospective, le RENAL-NS et le PADUA score permettent d’établir un lien entre la complexité lésionnelle et le choix du traitement.
Ce lien est statistiquement significatif pour la chirurgie, 88% des lésions traitées par chirurgie sont de faible et moyenne complexité tandis que seules 12% des tumeurs très complexes étaient traitées chirurgicalement (p= 0,006).
Les résultats en fonction du PADUA score sont similaires, 24 lésions opérées ont des PADUA ≥ 10 (26%, p< 0,05).
Une différence significative est mise en évidence par le PADUA score dans la répartition des lésions entre la RF et la cryothérapie. 8,3% des RF sont très complexes alors que pour la CT, 54,5% le sont (p=0,0001).
Le tableau II montre la répartition des traitements en fonction de la complexité lésionnelle selon le RENAL-NS :

<table>
<thead>
<tr>
<th></th>
<th>FC</th>
<th>CM</th>
<th>CE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>41 (44,6%)</td>
<td>40 (43,5%)</td>
<td>11 (11,9%)</td>
<td>P=0,00013</td>
</tr>
<tr>
<td>RF</td>
<td>24 (50%)</td>
<td>23 (47,9%)</td>
<td>1 (2,1%)</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>3 (13,6%)</td>
<td>10 (45,4%)</td>
<td>9 (41%)</td>
<td></td>
</tr>
</tbody>
</table>

Tableau II : répartition des traitements en fonction du RENAL-NS.

* FC : faible complexité, CM : complexité moyenne, CE : complexité élevée.
* NP : néphrectomie partielle, RF : radiofréquence, CT : cryothérapie.

Le tableau III présente la répartition des traitements en fonction de la complexité lésionnelle selon le PADUA score :
Les lésions de complexité faible et moyenne ont été majoritairement orientées vers la chirurgie et la radiofréquence tandis que les lésions de complexité élevée ont été en majorité traitées par cryothérapie (selon RENAL-NS p=0,0003, selon PADUA score p=0,001).

C- COMPLEXITE ET EFFICACITE

En analyse uni variée, le PADUA score est retrouvé comme facteur prédictif de succès du traitement.

Un PADUA score inférieur à 9 est associé à une SSR de 92,7% alors qu'une valeur supérieure ou égale à 9 est associée à une SSR de 82,2% (p=0,04)

Un PADUA supérieur ou égal à 9 représente un risque d'échec du traitement multiplié par 2,75.

Ces résultats sont représentés dans le tableau IV:

<table>
<thead>
<tr>
<th></th>
<th>SUCCES</th>
<th>ECHEC</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADUA < 9</td>
<td>76 (92,7%)</td>
<td>6 (7,3%)</td>
<td>p=0,04</td>
</tr>
<tr>
<td>PADUA ≥ 9</td>
<td>60 (82,2%)</td>
<td>13 (17,8%)</td>
<td></td>
</tr>
</tbody>
</table>

Tableau IV : Test du chi² : efficacité en fonction du PADUA score.
Selon le PADUA score, l’analyse par sous groupes montre :
- pour le groupe « complexité élevée », une différence significative entre le traitement chirurgical, la RF et la cryothérapie avec une SSR de 96%, 75% et 55% respectivement (p=0,009) ;
- pour le groupe « complexité moyenne », une différence est également retrouvée entre les différents traitements avec une SSR de 97,6%, 82,1% et 50% respectivement (p=0,001).
- Il n’y a pas de différence significative pour le groupe « faible complexité ».

Concernant le RENAL-NS, nous ne retrouvons pas de différence significative pour la SSR selon la complexité lésionnelle, la SSR en cas de complexité faible, moyenne ou élevée est de 93,7%, 84,5% et 80% (p=0,13).
En analysant les données par sous-groupes de complexité, on retrouve comme avec le PADUA score :
- une différence significative de survie sans récidive du groupe « complexité élevée », la NP obtenait 100% de SSR, la RF 100% et la cryothérapie 50% (p=0,02).
- pour le sous groupe de complexité moyenne, une différence significative est retrouvée entre la NP (SSR= 97,5%) et la CT (SSR= 60%), p=0,01 ;
- pour les faibles complexités, il n’est pas retrouvé de différence significative entre les traitements.

D- CORRELATION RENAL-NS/ PADUA

Un test de corrélation de Spearmann entre le RENAL-NS et le PADUA score retrouve une bonne corrélation entre ces 2 classifications (p< 0,0001, r=0,804) avec une corrélation parfaite pour les complexités élevées, et une tendance pour le RENAL-NS à sous-évaluer les lésions de complexité faible et moyenne.
Dans notre série, le taux de complications global est de 25,5%, 10 patients sur 162 (6,2%) ont présenté des complications majeures selon Clavien dont un décès.

La NP présentait un taux de complication de 28% (16/26 mineures et 10/26 majeures). 20,8% des patients traités par radiofréquence ont présenté des complications, toutes étaient mineures. La cryothérapie présentait un taux de complication de 26,1% avec une complication majeure.

E- COMPLEXITE ET MORBIDITE
En cas de NP, le RENAL-NS est prédictif de la morbidité thérapeutique. Avec un score entre 4 et 6, 83% des complications sont mineures, un RENAL-NS supérieur à 10 est associé à 100% de complications majeures (p=0,002)

Il n'y a pas de différence significative entre la voie d'abord et la survenue de complication.

De même pour la cryothérapie, une différence significative est trouvée entre la survenue de complication et un RENAL-NS > ou égal à 10 (p=0,04).

Pour la RF, il n'y a pas de lien significatif entre la complexité et la survenue de complication (p=0,28).

28,3% des patients présentant un PADUA score ≤ à 7 ont eu des complications dont 2,2% étaient majeures alors que les PADUA score supérieur ou égal à 10 avaient 30,7% de complications dont 12,8% majeures. Pour autant, ce lien n'est pas statistiquement significatif (p=0,46).

Intervention par intervention, aucune différence significative n'est mise en évidence entre la complexité lésionnelle selon le PADUA score et la survenue de complication.

Le tableau V présente les complications en selon la complexité tumorale :

<table>
<thead>
<tr>
<th></th>
<th>RENAL-NS</th>
<th>PADUA score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC</td>
<td>CM</td>
</tr>
<tr>
<td>Pas Comp</td>
<td>48 (40%)</td>
<td>59 (49,2%)</td>
</tr>
<tr>
<td>Comp min</td>
<td>18 (58,1%)</td>
<td>9 (29%)</td>
</tr>
<tr>
<td>Comp Maj</td>
<td>2 (20%)</td>
<td>5 (50%)</td>
</tr>
</tbody>
</table>

Tableau V: test du chi² de Pearson entre la complexité tumorale et la morbidité.
L’objectif primaire de notre travail était d’étudier le cout de réalisation des traitements des PTR afin de les comparer aux tarifs des GHS permettant de rémunérer l’établissement de soin.

En additionnant tous les critères étudiés, le cout moyen global de prise en charge est de 7075 € (ET= 4299,6) pour un minimum de 1888,8 € et un maximum de 29116 €.
Selon la tarification à l’activité, en moyenne, l’hôpital est rémunéré 6026,3 € par prise en charge de PTR (ET= 4220,6 €).
Quand on calcule la différence des moyennes des couts et de la valorisation, il ressort une perte moyenne de 1049,3 € par prise en charge.

Le traitement le moins couteux est la radiofréquence (3396,8 € en moyenne) mais la NPC est le traitement le plus rentable avec un gain moyen de 1588,3 € par procédure.

Le cout moyen, la valorisation moyenne et la rentabilité moyenne sont résumés dans le tableau VI :

<table>
<thead>
<tr>
<th>Traitement</th>
<th>COUT MOY € (ET)</th>
<th>VALORISATION MOY € (ET)</th>
<th>RENTABILITE MOY € (ET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPO</td>
<td>8442,2 (2947,3)</td>
<td>9802,3 (3484,8)</td>
<td>1360,1 (3706,4)</td>
</tr>
<tr>
<td>NPC</td>
<td>7933,4 (4585,1)</td>
<td>9421,7 (2225,7)</td>
<td>1488,3 (4309)</td>
</tr>
<tr>
<td>NPCR</td>
<td>9686 (4205,5)</td>
<td>8688,1 (2214,3)</td>
<td>-997,93 (3297,3)</td>
</tr>
<tr>
<td>RF</td>
<td>3396,8 (2098,3)</td>
<td>1721,2 (809,47)</td>
<td>-1675,5 (2027,5)</td>
</tr>
<tr>
<td>CT</td>
<td>8377,9 (3795,9)</td>
<td>1940,3 (870,36)</td>
<td>-6437,6 (4010,4)</td>
</tr>
</tbody>
</table>

Tableau VI : Cout moyen, valorisation moyenne et rentabilité moyenne pour chaque traitement.
La survenue de complications alourdit le cout du traitement avec une augmentation de 1935,8 € en moyenne pour une complication mineure et une augmentation de 8317,2 € en cas de complication majeure.

La complexité lésionnelle influe également le cout moyen de prise en charge. Pour les lésions présentant un PADUA score \leq à 7, le cout moyen est de 6591,8 euros, pour un score \geq 10, il est de 8418,4 €.

En étudiant la rentabilité de la prise en charge en fonction de la complexité tumorale, tous traitements confondus, les résultats sont représentés dans le tableau VII :

<table>
<thead>
<tr>
<th></th>
<th>RENAL-NS</th>
<th>PADUA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rentabilité Moy (€)</td>
<td>ET (€)</td>
</tr>
<tr>
<td>FC</td>
<td>135,9</td>
<td>3240,4</td>
</tr>
<tr>
<td>CM</td>
<td>-1619,6</td>
<td>4289,8</td>
</tr>
<tr>
<td>CE</td>
<td>-2737,7</td>
<td>5648,5</td>
</tr>
</tbody>
</table>

Tableau VII: Rentabilité globale en fonction de la complexité.
Traitement par traitement, on retrouve :

- pour la NP : une lésion simple permet un gain de 999,9 euros en moyenne alors qu’une lésion complexe réduit ce gain à 82,3 euros selon le PADUA score.

- Il n’y a pas de différence dans la rentabilité de la radiofréquence que la lésion soit complexe ou non (-1375,6 € contre -1536,1 €, selon le RENAL-NS).

- La cryothérapie des lésions de faible complexité entraîne une perte de 4468,4 € par procédure alors que le traitement d’une lésion dont le PADUA score est supérieure à 10 fait perdre 6970,1 € à l’établissement.

III- DISCUSSION

A- RESULTATS ONCOLOGIQUES ET FONCTIONNELS

Le CHU de Toulouse dispose des thérapeutiques les plus étudiées dans le traitement des PTR. L’offre de soins comprend la néphrectomie partielle ouverte (NPO), la néphrectomie coelioscopique pure (NPC) ou robot-assistée (NPCR), la radiofréquence percutanée (RF) et la cryothérapie percutanée (CT).

Dès le diagnostic posé les dossiers sont présentés en réunion de concertation pluri-disciplinaire de cancérologie et le traitement est décidé en fonction des caractéristiques de la lésion et de l’état général du patient.

Entre septembre 2009 et décembre 2011, deux cent deux patients ont été pris en charge dans notre établissement pour des tumeurs du rein de moins de 7 cm classées T1 selon la classification TNM, le seul critère d’exclusion était l’absence de TDM ou d’IRM préopératoire disponible.
162 patients ont été inclus dans notre étude, 93 ont bénéficié d’un traitement chirurgical, 48 d’une RF et 22 d’une cryothérapie.

Nous retrouvons une survie sans récidive globale (SSR) à 1 an de 87,7% avec respectivement une SSR de 95,5%, 84,4% et 60% pour la chirurgie, la RF et la cryothérapie.
Ces données sont pour la chirurgie et la RF en accord avec la littérature.
Les tableaux VIII et IX résument les résultats des grandes séries de NP et RF :

<table>
<thead>
<tr>
<th>Auteur</th>
<th>N</th>
<th>RECIDIVE LOCALE (%)</th>
<th>SUIVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinbach [53]</td>
<td>121</td>
<td>4,1</td>
<td>40</td>
</tr>
<tr>
<td>Moll [54]</td>
<td>142</td>
<td>1,4</td>
<td>35</td>
</tr>
<tr>
<td>Lerner [55]</td>
<td>185</td>
<td>5,9</td>
<td>44</td>
</tr>
<tr>
<td>Hafez [56]</td>
<td>485</td>
<td>3,2</td>
<td>47</td>
</tr>
<tr>
<td>Patard [17]</td>
<td>314</td>
<td>0,8</td>
<td>51</td>
</tr>
<tr>
<td>Becker [57]</td>
<td>241</td>
<td>1,4</td>
<td>66</td>
</tr>
</tbody>
</table>

Tableau VIII : Résultats oncologiques de grandes séries de NP.[58]

<table>
<thead>
<tr>
<th>AUTEUR</th>
<th>N</th>
<th>RECIDIVE LOCALE (%)</th>
<th>SUIVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagoria [42]</td>
<td>125</td>
<td>13</td>
<td>13,8</td>
</tr>
<tr>
<td>McDougal [59]</td>
<td>20</td>
<td>5</td>
<td>55,2</td>
</tr>
<tr>
<td>Hegarty [60]</td>
<td>82</td>
<td>11,1</td>
<td>12</td>
</tr>
</tbody>
</table>

Tableau IX : Résultats oncologiques de grandes séries de RF percutanées.[61]

Les publications anglo-saxones sur les traitements thermo-ablatifs sont nombreuses. Les résultats ne sont pas toujours comparables du fait des différentes voies d’abord utilisées, ouverte, coelioscopique ou percutanée.

Les grandes méta-analyses sur ces traitements retrouvent des taux de récidive locale respectivement de 11,7% et 4,6% pour la RF et la cryothérapie.[62, 63]
La récidive locale était définie par la prise de contraste à l’imagerie injectée de contrôle.
Weight avait intégré dans son protocole de suivi post-thermo-ablation des biopsies à 6 mois qui retrouvaient des cellules néoplasiques actives dans 6,2% des cryothérapies et 25% des RF. Pourtant la moitié des patients traités par RF avec des biopsies positives ne présentaient pas de rehaussement lésionnel à l’imagerie.[64]

Actuellement le débat du « skipping » ou persistance de cellule active après RF sans rehaussement à l’injection de produit de contraste n’a pas encore trouvé de réponse.

Les résultats oncologiques de la RF sont difficiles d’interprétation du fait de la persistance de cellules tumorales vivantes sans corrélation radiologique. Les résultats sont encore trop précoces pour savoir si ces cellules sont responsables de récidives locales plus nombreuses.

Volpe et Al précisent que malgré des récidives locales plus importantes avec les traitements ablatifs (RR= 7,45 de la cryothérapie par rapport à la NP et 18,23 de la RF) la progression métastatique n’est pas significativement différente entre les 3 prises en charge.[62]

Dans notre série, la SSR après RF est meilleure qu’après cryothérapie (84,4% vs 60%, p=0,037).

Contrairement à Hegarty et al qui réservaient la RF aux lésions les plus complexes [60], les lésions les plus volumineuses et les plus proches du système collecteur ou du sinus ont été traitées par cryothérapie. La RF était proposée pour les lésions de moins de 4 cm, exophytiques et plutôt postérieures.

Une explication possible des résultats inférieurs de la cryothérapie dans notre étude peut être fournie par la différence de complexité lésionnelle.

Nos résultats oncologiques à court terme et les recommandations des sociétés savantes européennes et américaines sur la thermo-ablation confortent les indications de ce type de traitement pour les patients non candidats à la chirurgie du fait d’importantes comorbidités ou d’une prédisposition génétique (maladie de Von-Hippel-Lindau).[9, 10]

En 2008, 67% des PTR étaient encore traitées par néphrectomie radicale [65]. Le nombre de néphrectomies élargies augmente désormais moins rapidement que celui de la néphrectomie partielle mais reste majoritaire.

La chirurgie d’épargne néphronique est pourtant devenue le traitement de référence des PTR, elle est préconisée en première intention dans les recommandations des sociétés savantes françaises, européennes et américaines.

![Figure 7 : Evolution des traitements des PTR entre 1998 et 2008 aux EU.[65]](image)

Améliorer la diffusion de la néphrectomie partielle est le challenge des urologues de la nouvelle génération.

Avant 2009, la description anatomique des lésions rénales était loin d’être standardisée. Le critère le plus souvent étudié et le plus en rapport avec les résultats oncologiques et la survenue de complication était la taille tumorale.[66-68]
Kutikov et Ficarra comblent ce manque la même année, le premier publie son RENAL nephrometry score tandis que Ficarra propose sa Préopérative Aspects and Dimensions Used for an Anatomical classification.[51, 52]
Depuis, de nombreuses équipes chirurgicales ont établi un lien entre ces deux outils de description et le choix thérapeutique ainsi que la survenue de complication.[69-72]

Plus récemment, la complexité lésionnelle est devenue un facteur prédictif de complication pour les traitements thermo-ablatifs.[73, 74]

Nous retrouvons dans notre étude une répartition des lésions traitées en fonction de leur complexité, qu'elle soit évaluée par le RENAL-NS ou le PADUA score.
Les lésions de complexité faible et moyenne ont été majoritairement orientées vers la chirurgie et la radiofréquence tandis que les lésions de complexité élevée ont été traitées pour moitié par néphrectomie partielle et pour l'autre moitié par cryothérapie (selon RENAL-NS p=0,00013, selon PADUA score p=0,0012).
L'utilisation de la cryothérapie pour les lésions le plus complexes est intéressante à souligner car les publications qui ont montré que le choix du traitement dépendait de la complexité tumorale ne faisaient référence qu'à la chirurgie. Les options thérapeutiques étudiées étaient la néphrectomie partielle et élargie [69, 70].
A notre connaissance, aucune étude, même rétrospective n'a été publiée sur l'utilisation de ces scores pour le choix de la radiofréquence ou la cryothérapie.

Dans notre service, les lésions de faible et moyenne complexité sont traitées en première intention par néphrectomie partielle ou RF lorsque l'état général du patient ne permet pas la chirurgie. Les lésions complexes sont traitées par NP ou cryothérapie lorsque la chirurgie est contre-indiquée. Les lésions très complexes bénéficient d'une néphrectomie élargie sauf pour les candidats à l'épargne néphronique de nécessité qui sont traités par cryothérapie. Cette dernière option est alors considérée comme un traitement de recours et le patient est informé du risque augmenté de traitement incomplet.
Notre étude montre un taux de complications de 25,5%. Celles-ci ont été classées selon la classification de Clavien, qui est communément utilisée pour décrire les complications post-opératoires.

La chirurgie partielle est grevée d’un taux de complication de 28%, ce qui est légèrement supérieur à la littérature.

Un décès est survenu par embolie pulmonaire à J4 d’une néphrectomie partielle laparoscopique.

Les taux de complications des traitements percutanés sont identiques à ceux de la littérature.

Contrairement à l’étude de Ficarra, dans notre série, le PADUA score n’est pas significativement prédictif de la survenue de complication en cas de traitement chirurgical. 27% des complications sont survenues pour des lésions de faible complexité, 42,3% pour les moyennes complexités et 30,7% pour les fortes complexités.

Le PADUA score n’a jamais été étudié comme facteur prédictif de la morbidité des traitements thermo-ablatifs. Dans notre série, il n’y a pas de lien entre le score PADUA et la survenue de complication pour la RF comme pour la cryothérapie.

L’absence de lien entre le PADUA score et la morbidité chirurgicale peut s’expliquer par le faible nombre de lésions complexes traitées chirurgicalement. De plus, l’étude princeps du PADUA score retrouvait une différence significative entre le score de PADUA et la survenue de complications avec seulement 8 lésions score 11, 4 lésions score 12 et 1 lésion score 13. Nous ne retrouvons pas ce lien statistique avec un nombre plus important de lésions.

Le RENAL-NS est dans notre population comme dans la littérature un facteur prédictif de morbidité chirurgicale et après cryothérapie.

Dans notre série, le PADUA score est inférieur au RENAL-NS pour prédire la morbidité thérapeutique.

L’originalité de notre travail repose sur l’évaluation de la SSR en fonction de la complexité tumorale calculée par le RENAL et le PADUA score.

La littérature internationale fait état de peu de publications sur ce sujet.
Panumatrassamee compare les résultats fonctionnels entre la cryothérapie et la néphrectomie partielle en fonction du RENAL-NS. Un des critères étudiés était la récidive locale, 28% (12/43) des patients traités par cryothérapie laparoscopique ont présenté une récidive locale, aucun pour la NP. Le RENAL-NS n’influait pas sur la récidive locale dans cette étude.[75]

Tous traitements confondus, avec notre effectif de 162 patients, nous ne retrouvons pas de différence significative de la SSR en fonction du RENAL-NS (p=0,13), toutefois une tendance à la diminution de la SSR avec l’augmentation de la complexité se dessine (la SSR pour les faible, moyenne et forte complexité est de 93,7%, 84,5% et 80%).

Un effectif plus important avec un même nombre de patients par traitement permettrait sans doute de mettre en évidence un lien statistiquement significatif entre la SSR et la complexité tumorale. En comparant le succès thérapeutique entre le groupe de faible et de forte complexité le « p » est retrouvé à 0,08.

L’utilisation du PADUA score pour prédire le succès thérapeutique semble plus prometteuse. En effet, la SSR est significativement meilleure pour les complexités faibles par rapport aux fortes (92,7% vs 82,2%, p=0,04).

En étudiant chaque sous-groupe, on retrouve :
- en cas de « complexité faible »: aucune différence significative entre les traitements et la SSR. La chirurgie, la RF et la cryothérapie sont équivalentes,
- en cas de complexité moyenne : la chirurgie est associée à une meilleure SSR que la RF (97,6% vs 82,1%, p=0,03) ou que la cryothérapie (50%, p=0,04).
- en cas de « complexité élevée » : la NP est significativement meilleure que la cryothérapie avec une SSR de 96% vs 54,5%, p=0,006.

Il n’est pas retrouvé de différence significative entre la NP et la RF dans ce groupe du fait du très faible nombre de lésions complexes traitées par RF.

Weight et al ont étudié le lien entre le RENAL-NS et la survenue de métastase après néphrectomie élargie et partielle. Dans leur série, plus le RENAL score est élevé, plus il y a de risque de métastase à distance, de décès par cancer et de décès par autre cause. [76]
Avec toutes les réserves dues aux biais de cette étude, le RENAL-NS pourrait être un facteur prédictif du potentiel métastatique d'une lésion tumorale rénale.

L’évaluation anatomique de la tumeur rénale par le PADUA peut représenter une aide au choix thérapeutique. Une lésion de complexité faible peut être traitée de façon équivalente par chirurgie, RF ou cryothérapie, le choix sera porté en fonction de l’état général du patient.

Un PADUA score entre 8 et 9 fera porter le choix sur la NP. Lorsque celle-ci n’est pas envisageable, la radiofréquence est une bonne alternative.

En cas de complexité élevée, si l’épargne néphronique est indispensable, il faudra préférer la NP à la cryothérapie, sinon la néphrectomie élargie laparoscopique est l’option de choix.

Cette étude comporte de nombreuses limites, la plus importante étant d’être rétrospective. L’effectif réduit entraîne la fabrication de sous-groupe où le nombre de patient est faible ce qui peut diminuer la force du lien statistique.

Toutefois, cette étude, en intention de traiter souligne la possibilité pour le RENAL-NS et le PADUA score d’être des éléments associés à l’efficacité du traitement en plus d’être prédictifs du choix thérapeutique et de la survenue de complication.

Des essais prospectifs, randomisés, de plus grande puissance sont nécessaires pour confirmer le caractère prédictif du succès thérapeutique de ces 2 scores.

B- ANALYSE COUT-EFFICACITE

En économie, une analyse cout-efficacité est un outil d’aide à la décision. Il a pour but d’identifier la voie la plus efficace, du point de vue économique, d’atteindre un objectif.

Dans le cadre de l’évaluation, l’analyse permet de discuter l’efficacité économique d’un programme ou d’un projet[77].
L’analyse économique en santé est un moyen de rationaliser les dépenses de santé. Elle peut être utile à la décision de choix de technique en évaluant le service rendu à la population par rapport au cout. La difficulté de cette analyse repose sur la difficulté de mesurer l’ensemble des couts, de définir un coefficient d’actualisation et d’estimer la valeur d’une vie humaine[78].

Nous avons réalisé une étude cout-efficacité du traitement des PTR au CHU de Toulouse. Le cout global moyen du traitement d’une PTR est de 7075,7 euros (ET = 4299,6€), pour un minimum de 1888,8 € et un maximum de 29116 €.

En ce qui concerne le traitement chirurgical :
- une NPO coutait en moyenne 8442,2 € (ET= 2947,3 €),
- une NPC coutait en moyenne 7933,4 € (ET= 4585,1 €) et
- une NPCR coutait en moyenne 9686 € (ET= 4205,4 €).

Le cout maximum pour une NP était de 29115,87 euros, le patient avait bénéficié d’une néphrectomie partielle laparoscopique pure, compliquée d’une fistule urinaire nécessitant un drainage par sonde urétérale puis sonde double J ainsi qu’un drainage percutané jusqu’à cicatrisation complète de la fistule. L’hospitalisation a duré 36 jours.

Le cout minimum était de 5034,74 €, le traitement étant une néphrectomie partielle coelioscopique avec une durée de séjour de 5 jours.

Les dépenses chirurgicales les plus importantes sont représentées par l’hôtellerie hors soin (5505,9 €), l’utilisation du bloc opératoire (978,11 €) et le matériel chirurgical utilisé en robotique (2504,1 €).

Pour le traitement thermo-ablatif :
- une RF coutait en moyenne 3396,8 € (ET= 2098,3 €) et
- une CT coutait en moyenne 8377,9 € (ET= 3795,9 €).
Le cout maximum pour une thermo-ablation était de 19438,75 euros, la patiente avait présenté 6 mois après une première cryothérapie une récidive tumorale nécessitant une deuxième séance, celle-ci s’est compliquée d’une fistule urinaire avec pose de sonde JJ.

Le cout minimum était de 1888,80 €, il représente une radiofréquence percutanée non compliquée avec traitement complet à 1 an.

L’essentiel des dépenses des traitements par radiofréquence et cryothérapie réside dans les aiguilles utilisées. La radiofréquence n’utilise qu’une seule aiguille déployable par lésion dont le prix référencé à la pharmacie hospitalière est de 915 euros.

Un traitement par cryothérapie utilise en moyenne 3 cryodes, le prix est de 3000 € pour le kit d’utilisation comprenant 1 cryode, chaque aiguille supplémentaire coute 950 €.

Le cout des traitements médicaux et chirurgicaux est un élément de plus en plus important dans la décision thérapeutique.

La littérature internationale comprend un nombre croissant de références portant sur les couts de prise en charge et leur justification par l’amélioration du service médical rendu.

Souvent, une même pathologie dispose de plusieurs traitements, les différences de cout des traitements sont comparées et publiées pour permettre aux praticiens et aux établissements de santé de proposer la prise en charge la plus efficace et la moins couteuse.

Des études cout-­‐efficacité ont déjà été publiées dans la littérature anglo-­‐saxone, pour le traitement des PTR.

Dans leur étude, la RF représente le traitement le moins couteux (4454 US$, NPO : 7767 US$, NPL : 7013 US$).[79]

Plus récemment, Castle menait une étude cout-­‐efficacité sur le traitement des T1a du rein. Les critères étaient les même que Lotan, le cout du suivi sur 6 mois était également pris en compte. Les résultats montraient un cout moyen pour la NP ouverte, robot-
assistée, la RF laparoscopique et percutanée de 17018 US$, 20314 US$, 13965 US$ et 6475 US$.[80]

Ces auteurs ont mené leurs études selon le même design que la notre, l’évaluation des couts était rétrospective prenant plus ou moins en compte la survenue de complication et le suivi. Nous avons calculé le cout d’une année de suivi après le traitement initial pour intégrer le cout de la récidive précoce quand elle survient, notamment après traitement thermo-ablatif.

Matin et al, rapportaient que 69,8% des traitements thermoablatifs incomplets récidivaient dans les 3 premiers mois et que 92,1% des échecs étaient repérés la première année.[81]

Une autre approche consiste à fabriquer un modèle de Markov permettant de prédir l’espérance de vie et le cout de cette espérance de vie adapté à la qualité de vie (QALY) chez un patient type souffrant d’une PTR en fonction du traitement délivré.

En 2008, Pandharipande rapporte une meilleure QALY pour la chirurgie partielle mais au prix d’un cout par QALY beaucoup plus important que la radiofréquence.[82]

Au contraire, Chang réalisait le même type de modèle statistique et retrouvait la NP laparoscopique ou ouverte comme stratégie la plus efficace en fonction du cout lorsqu’elle est évaluée par QALY. La surveillance devenait intéressante pour les patients ayant une espérance de vie inférieure à 3 ans.[83]

Ces différentes publications se rapprochent de notre étude dans l'esprit, mais ont été menées essentiellement aux Etats-Unis. Pourtant la prise en charge financière de la santé est radicalement différente entre les Etats-Unis et la France.

L’Assurance maladie en France est une des quatre branches de la Sécurité sociale. Elle a vu le jour en 1928, sous le ministère de Raymond Poincaré.

Elle est constituée de trois régimes principaux dont le régime général.

Le régime général assurait en 2009, à près de 57 millions de bénéficiaires, soit 89 % de la population, une protection au regard de cinq risques : maternité, maladie, accidents du travail/maladies professionnelles, invalidité, décès. [84]
L’assurance maladie finance près de 75 % des dépenses de santé. En moyenne, en 2006, chaque assuré du Régime général a perçu près de 1 890 euros de remboursement de soins. En 2009, le montant total des prestations nettes versées s’élève à 138,4 milliards d’euros. Pour le régime général de la branche maladie, l’essentiel des recettes provient des cotisations sociales (48 % des recettes totales) et de la contribution sociale généralisée (CSG, 36 %). Les autres prélèvements (impôts et taxes divers) concernent les taxes sur l’alcool, le tabac, les contributions de l’industrie pharmaceutique (11 % des recettes).

Un ticket modérateur (part laissée à la charge de l’assuré après le remboursement de l’Assurance Maladie) fixé à 20 % est institué dès l’ordonnance de 1945 sur les soins et les frais médicaux remboursables. Certains cas d’exonération sont fixés en particulier pour les bénéficiaires de l’assurance longue maladie. Aujourd’hui, le montant du ticket modérateur varie en fonction de la situation de l’assuré et du respect du parcours de soins coordonnés. Les assurés souffrant d’une Affection de Longue Durée (ALD) bénéficient de l’exonération du ticket modérateur.[84]

Le système de santé français a été caractérisé selon le « Rapport sur la Santé dans le Monde 2000 - Pour un système de santé plus performant » de l’Organisation mondiale de la santé en 2000 comme le plus performant en termes de dispensation et d’organisation des soins de santé.[85]

En 2010, 75,8 % de la consommation de soins et de biens médicaux est financée par la sécurité sociale, 13,5 % par les organismes complémentaires (mutuelles, compagnies d’assurance, institutions de prévoyance), 9,4 % sont à la charge des ménages et l’État avec les collectivités locales en assurent quant à eux 1,2 %.[86]

Le cancer du rein, comme tous les autres cancers, fait partie de la liste des ALD 30. De ce fait, sa prise en charge, du diagnostique jusqu’au traitement puis au suivi, est intégralement remboursée par l’Assurance maladie.
Pourant celle-ci est déficitaire depuis plus de 10 ans et le déficit s’est aggravé drastiquement, passant de 4,4 milliards d’euros en 2008 à 11,6 en 2010.

En 2009, l’effet de la crise et la baisse de la masse salariale conduisent à dégrader le déficit (-1,25 % au lieu de 2,75 % en LFSS). La Commission des comptes de la Sécurité
sociale prévoit un déficit du régime général de la branche maladie de 9,4 milliards d’euros. Dans ce contexte, le Ministère de la Santé et le Ministère du Budget ont réaffirmé leur objectif de respecter l’ONDAM et de maîtriser les dépenses de santé.

![Figure 8: Solde annuel du régime général de 1999 à 2013 et modifications des prévisions pour 2012-2013.][87]

L’objectif de l’État est de ramener le budget de l’assurance maladie à l’équilibre d’ici 2015.[84]

Dans le but de maintenir ce système solidaire envié, les études médico-économiques sont nécessaires afin de juger de la pertinence des dépenses engagées dans les soins proposés.

L’analyse économique en santé est un moyen de rationaliser les dépenses de santé. Elle peut être utile à la décision de choix de technique en évaluant le service rendu à la population par rapport au cout. Cette analyse économique peut prendre plusieurs aspects, l’analyse cout-efficacité comme dans notre étude, l’analyse cout-utilité, l’analyse cout-bénéfice. L’analyse économique en santé est ardue du fait de la difficulté à mesurer l’ensemble des couts, de définir un coefficient d’actualisation et d’estimer la valeur d’une vie humaine.[78]
L'originalité de notre travail était de proposer une comparaison des couts, en France, dans un centre hospitalo-universitaire, des différentes options de traitement des PTR et d’évaluer la rentabilité de ces options en opposants les couts engendrés au remboursement assuré par l’Assurance Maladie.

Nous avons rencontré des difficultés de recueil de données. En effet, il n’a pas été possible d’intégrer au calcul des couts par patients les données de pharmacie car les dotations médicamenteuses sont assignées au service et ne sont pas nominatives. Les médicaments consommés ne sont pas rattachables au séjour d’un patient donné.

Nous n’avons pas incorporé les frais liés à la structure et à l’amortissement du matériel. Mais étant donné que ce type de dépenses est présent dans tous les traitements étudiés et qu’il n’a été pris en compte pour aucun, nous avons considéré que la comparaison des couts et des valorisations était recevable.

La rentabilité n’est pas un concept retrouvé dans la littérature internationale étant donné que nous possédons en France le seul système de santé qui rembourse intégralement les frais de prise en charge du cancer.

Dans notre analyse, à l’instar des résultats déjà publiés dans la littérature, le traitement thermo-ablatif par radiofréquence percutanée est le moins couteux. La durée de séjour est en moyenne de 2 jours, dans un service d’hospitalisation traditionnelle de chirurgie, la morbidité est faible ce qui entraîne peu de surcout.

Le cout moyen de RF égal à 3396,8 euros s’explique par le matériel à usage unique utilisé pour le traitement, 915 € par aiguille et par un taux de récidive de 15% avec nécessité de retraitement.

L’absence de rentabilité de la radiofréquence est due au fait qu’il n’existe pour le moment pas d’acte CCAM de traitement percutané de tumeur du rein. La tarification à l’activité pour ce traitement est faite en utilisant le code CCAM du traitement percutané de tumeur du foie.

De même, la valorisation du séjour ou GHS répond à l’intitulé « 4303 : tumeur des reins et des voies urinaires, niveau 1 », dont la valorisation est 1831,05 €. Cet intitulé correspond à un diagnostic et non à un traitement.
Pourtant, le site www.etsad.fr, outil internet permettant de s'informer sur les nouvelles technologies en santé et leur évaluation médico-économique, publie dès 2010, la bonne efficacité de ce traitement avec une excellente tolérance.

Ce n’est qu’une question de temps pour que la RF, qui bien que légèrement moins efficace que la néphrectomie partielle mais mieux tolérée et surtout moins couteuse, soit valorisée avec un acte CCAM propre et un GHS adapté. Il est vraisemblable que dans ces conditions, la radiofréquence percutanée devienne le traitement le plus rentable pour les PTR.

La cryothérapie pose un autre problème. Aujourd’hui le matériel nécessaire est financé au CHU de Toulouse par une enveloppe dédiée aux activités nouvelles. Le consommable n’est donc pas remboursé par l’assurance maladie.
La différence entre le cout moyen du traitement et la valorisation que l’on peut en attendre fait de la cryothérapie l’option thérapeutique la moins rentable (perte moyenne= 6437,9€).
En effet, le traitement est couteux en matériel à usage unique et en logistique. La valorisation se fait comme pour la radiofréquence par le code CCAM du traitement percutané de lésion hépatique et par un GHS diagnostic de tumeur du rein et des voies urinaires (GHS 4303).
La littérature internationale atteste de l’efficacité à moyen terme de la cryothérapie avec une excellente tolérance mais s’accorde à dire que son cout est son principal facteur limitant.[34, 35, 37, 62, 88]

Dans notre série, le taux de survie sans récidive de la cryothérapie est inférieur à celui de la littérature, 60% à 1 an. Cette différence importante peut s’expliquer par la complexité des lésions traitées par cryothérapie, 41% des tumeurs étaient de complexité élevée. La cryothérapie représentait alors le traitement « de la dernière chance » pour des patients contre-indiqués à la chirurgie et dont la lésion ne pouvait être traitée par radiofréquence.
Bien que notre effectif soit insuffisant pour conclure de façon définitive, notre analyse cout-efficacité de la cryothérapie n’est pas en faveur de l’élargissement des indications et de la diffusion de cette technique en dehors de centre de référence.

La moyenne des couts de la néphrectomie partielle ouverte est de 8442,2 €, elle est supérieure à celle de la NP laparoscopique car la durée moyenne de séjour est de 10 jours. Le cout maximal d’une NPO était de 13602 € et s’expliquait par la survenue d’un faux anévrysme de la tranche de section nécessitant une embolisation.

Le remboursement moyen pour ce traitement est de 9802,3 €. Ce résultat correspond à l’utilisation des GHS « 4112, 4113 et 4114 : interventions sur les reins et les uretères et chirurgie majeure de la vessie pour une affection tumorale, niveau 1 à 3 », valorisé de 7307,58 € à 13 176,6 €.

Le remboursement maximal pour une NPO dans notre série était de 23016,06 €, il est du à une erreur de codage, GHS « 1990 : interventions sur l’œsophage, l’estomac et le duodénum pour tumeurs malignes, âge supérieur à 17 ans, niveau 4 ».

Une néphrectomie partielle laparoscopique coute en moyenne 7933,4 €, la médiane de durée de séjour est 7 jours. Le cout minimum est de 5001,68 € pour une hospitalisation de 5 jours, sans complication. La valorisation pour une NPC « standard » est donnée par les GHS 4112, 4113, 4114, soit de 7307,58 € à 13 176,6 €.

Au maximum, cette prise en charge a couté 29115,87 €. Le patient est resté hospitalisé 36 jours du fait de la survenue d’une fistule urinaire nécessitant un drainage urétral et percutané.

La NPC était dans notre série le traitement le plus rentable pour l’établissement car la valorisation moyenne était de 9421,7 €, ce qui représente un gain de 1488,3 euros par procédure.

La NP robot-assistée est le traitement le plus couteux avec une moyenne de 9686 €. Le surcout de 1752,6 € par rapport à la laparoscopie pure est du au consommable robotique dont le prix est de 2504,1 € par procédure (178 € pour la NPC). Ce calcul n’inclut pas l’amortissement de l’achat initial du robot Da Vinci.
Le coût d'une NPCR « standard », c'est à dire sans complication avec traitement complet était de 6166,7 euros pour une durée de séjour de 4 jours.

La valorisation par le GHS était comparable aux autres traitements chirurgicaux (entre 7307,58 € et 13 176,6 €). La valorisation moyenne de cet acte est de 8688,1 €, ce qui est inférieur à la valorisation moyenne de la NPC du fait d'une erreur de codage en défaveur de la procédure robot-assistée (GHS « 4126 : interventions transurétrales ou par voie transcutanée, niveau 2 », 3420,02 €).

La NPCR représente donc une source de déficit pour l'établissement de soin, égale à 997,93 € en moyenne par procédure.

De nombreuses publications, majoritairement aux Etats-Unis, ont comparé les couts de la chirurgie d'épargne néphronique laparoscopique et robot-assistée. Il en ressort une tendance à la diminution des taux de complications, un temps d'ischémie raccourci et une durée de séjour moins longue au prix d'un surcout non négligeable pour la NPCR. [89-91]

![Figure 9 : cout, valorisation et rentabilité moyenne par traitement.](image)
Parmi les missions spécifiques du CHU, l’évaluation de l’innovation technologique en santé est une des plus intéressantes. La recherche clinique permet l’évaluation de l’efficacité et la tolérance ainsi que la comparaison avec le standard. La réalisation d’études medico-économiques, en partenariat avec les gestionnaires de pôle ajoute un critère supplémentaire aidant à la décision de diffusion de la technologie et sa prise en charge par la sécurité sociale.

Les prises en charge médicales sont de plus en plus couteuses du fait de l’innovation. La recherche publique et industrielle investit des sommes importantes pour la recherche et le développement.

Une nouvelle molécule ou un nouveau dispositif médical commercialisé doit permettre le retour sur investissement de son développement ainsi que le remboursement des sommes engagées dans des projets qui n’aboutissent à aucune commercialisation.

Enfin, le nouveau produit pharmaceutique doit permettre au laboratoire de dégager des profits.

L’innovation en santé doit s’inscrire dans un contexte de maitrise et d’optimisation des dépenses, c’est pour cela que les industriels doivent mener des études sur l’impact médico-économique de leur innovation pour démontrer sa pertinence.[92]

La définition de l’innovation selon l’HAS est une technologie de santé susceptible d’améliorer de façon importante la prise en charge thérapeutique ou diagnostique d’un patient, elle apporte une compensation à un handicap ou bien a un intérêt de santé publique.

L’innovation est soumise à l’évaluation de la Commission de Transparence de la Haute Autorité de Santé qui lui attribue un niveau d’amélioration du service médical rendu. Le Comité Economique des Produits de Santé (CEPS) fixe ensuite les tarifs de remboursement et propose au ministre de la Santé d’inscrire le produit sur la liste des produits remboursés.

Dans le domaine de la santé, plusieurs types d’innovation apparaissent : des produits génériques, des produits améliorés par rapport aux existants, et des innovations plus compliquées qui induisent un changement des méthodes de travail. Il faut être en mesure de faire la preuve de l’innovation (essais cliniques).
Les innovations décisives et coûteuses pour lesquelles le surcroît de dépenses, parfois important qu'elles entraineront pour la collectivité n’a que des contreparties non financièrement mesurables en terme d'amélioration de la prise en charge des malades. [92]

Le but de la réflexion que nous avons menée était d’apporter aux tutelles ainsi qu’aux praticiens des réponses sur l’efficacité des thérapeutiques disponibles dans le traitement des PTR et le cout qu’elles engendrent pour l’Assurance-Maladie et donc pour la collectivité. Une telle étude peut permettre aux autorités de santé de faire évoluer la liste des actes CCAM en y introduisant la radiofréquence des PTR ainsi que la cryothérapie dans les indications que nous avons mises en avant.
CONCLUSION

L’incidence des PTR en fait un véritable problème de santé publique. Les critères pronostiques ne sont pas encore identifiés ce qui impose de proposer un traitement curatif à tous les patients sauf exception.
L’approche mini-invasive des ces lésions asymptomatiques est déjà ancrée dans les mentalités, il reste à diffuser le concept d’épargne néphronique.
Celle-ci passe par l’obligation de traiter les PTR par néphrectomie partielle ou par thérapies ablatives pour les mauvais candidats à la chirurgie, dans le respect des recommandations.
L’évaluation systématique des tumeurs rénales par les scores validés que sont le RENAL-NS et le PADUA score devrait permettre de proposer au patient le traitement le plus adapté à sa situation en terme de bénéfice/risque.

La néphrectomie partielle et la radiofréquence sont des traitements efficaces, leur tolérance est bonne. La cryothérapie peut être réalisée pour des lésions très complexes chez des patients contre-indiqués pour la chirurgie.
Du point de vue de l’établissement de soin, la rentabilité est un facteur de choix d’investissement dans les technologies innovantes dans les limites d’une efficacité et d’une tolérance acceptable.
Dans les conditions actuelles de remboursement, la néphrectomie partielle coelioscopique a le meilleur rapport cout/efficacité.
Une ouverture à la concurrence du matériel robotique ainsi qu’une valorisation adéquate de la radiofréquence dans l’avenir pourraient modifier ce constat.
BIBLIOGRAPHIE

9. <guide line eau.pdf>.
10. <guides lines AUA.pdf>.
77. L’analyse cout-efficacité.
78. Nicolas, P.V., *Pourquoi évaluer l’impact médico-économique d’une innovation ?*

85. OMS, L’*OMS évalue les systèmes de santé dans le monde.* 2000.

86. Article *Système de santé français* de Wikipédia en français (http://fr.wikipedia.org/wiki/Syst%C3%A8me_de_sant%C3%A9_fran%C3%A7ais).

ANNEXE 1

R.E.N.A.L. nephrometry score[51]

<table>
<thead>
<tr>
<th></th>
<th>1pt</th>
<th>2pts</th>
<th>3 pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)adius (maximal diameter in cm)</td>
<td>≤4</td>
<td>>4 but < 7</td>
<td>≥ 7</td>
</tr>
<tr>
<td>(E)xophytic/endophytic properties</td>
<td>≥50%</td>
<td><50%</td>
<td>Entirely endophytic</td>
</tr>
<tr>
<td>(N)eareness of the tumor to the collecting system or sinus (mm)</td>
<td>≥7</td>
<td>>4 but < 7</td>
<td>≤ 4</td>
</tr>
<tr>
<td>(A)nterior/Posterior</td>
<td>No points given. Mass assigned a descriptor of a, p, or x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L)ocation relative to the polar lines<sup>*</sup></td>
<td>Entirely above the upper or below the lower polar line</td>
<td>Lesion crosses polar line</td>
<td>>50% of mass is across polar line (a) or mass crosses the axial renal midline (b) or mass is entirely between the polar lines (c)</td>
</tr>
</tbody>
</table>

[*] suffix “h” assigned if the tumor touches the main renal artery or vein

Figure 1. R.E.N.A.L. Nephrometry Score with scoring of (L)ocation component. Polar lines (solid lines) and axial renal midline (broken line) are depicted on each sagittal view of kidney. Numbers 1 to 3 represent points attributed to each category of tumor.
ANNEXE 2

Preoperative Aspects and Dimensions Used for an Anatomical Classification [52]
Fig. 3 – (a) Longitudinal classification of the tumours; (b) margin location of the tumours; (c) tumour relationship with renal sinus; (d) tumour relationship with urinary collecting system; (e) tumour deepening into the parenchyma; (f) tumour size classification.
But de l'étude : 60% des cancers du rein diagnostiqués actuellement sont des lésions de moins de 7 cm, asymptomatiques, de découverte fortuite. La néphrectomie partielle reste le traitement de référence. Lorsque celle-ci n'est pas recommandée, les thérapies thermo-ablatives sont efficaces et bien tolérées.

Le RENAL score et le PADUA score reflètent la complexité lésionnelle, ils permettent de prédire la morbidité thérapeutique.

Ces différentes prises en charge n'ont ni la même efficacité ni le même cout.

L'objectif de cette étude est double, évaluer la pertinence d'utilisation des scores anatomiquts comme facteur prédicatif de succès thérapeutique et réaliser une analyse cout-efficacité des 5 modalités de traitement des PTR soit la néphrectomie partielle ouverte (NPO), laparoscopique (NPC) ou robot-assistée (NPCR), la radiofréquence (RF) et la cryothérapie (CT).

Matériel et méthode : 162 patients ont été traités pour des PTR entre septembre 2009 et décembre 2011, 92 par NP, 48 par RF et 22 par CT. Rétrospectivement, nous avons analysé la complexité lésionnelle et les résultats à 1 an. Le succès thérapeutique a été défini par l'absence de récidive locale ou à distance à la fin du suivi.

Les critères économiques étudiés étaient l'hôtellerie, la biologie, l'imagerie, le bloc opératoire, le matériel chirurgical et radiologique et le salaire des praticiens.

Résultats : Pour les lésions de complexité faible, la NP, la RF et la CT ont des résultats équivalents. Dans le groupe de complexité moyenne, la chirurgie est soit équivalente (selon le RENAL-NS : SSR= 95,1% vs 80%, p=0,09) soit supérieure (selon le PADUA score : SSR= 97,6% vs 82,1%, p=0,03) à la radiofréquence et la cryothérapie (SSR= 97,5% vs 60%, p=0,01). Pour les lésions très complexes, la chirurgie est supérieure à la cryothérapie (SSR= 100% vs 50%, p=0,018). La radiofréquence n'est pas utilisée dans ce sous-groupe.

Les couts moyens de néphrectomie partielle sont respectivement de 8442,2 € pour la laparotomie (NPL), 7933,4 € pour la coelioscopie (NPC), 9686 € pour la laparoscopie robot-assistée (NPCR). La radiofréquence coute en moyenne 3396,8 € et la cryothérapie, 8377,9 €.

En comparant avec la tarification à l'activité, les traitements bénéficiaires sont la NPO (+ 1360,1€), la NPC (+ 1488,3€). Les traitements déficitaires sont la NPCR (-997,9€), la FR (-1675,5€) et la CT (-6437,6€).

Conclusion : La néphrectomie partielle est le traitement de choix des petites tumeurs du rein de complexité moyenne et élevée.

Dans les conditions actuelles de remboursement, la voie d'abord laparoscopique pure est la plus rentable pour l'établissement de soin.

TITRE EN ANGLAIS: The treatment of small renal masses: A Cost-effectiveness Analysis

DISCIPLINE ADMINISTRATIVE : Médecine spécialisée clinique

MOTS-CLES : cancer du rein, T1, néphrectomie partielle, thermo-ablatif, médico-économique, RENAL score, PADUA score.

INTITULE ET ADRESSE DE L’UFR OU DU LABORATOIRE : Université Toulouse III-Paul Sabatier Faculté de médecine Toulouse-Purpan, 35 Allées Jules Guesde BP 7202 31073 Toulouse Cedex 7

Directeur de thèse : Professeur Bernard Malavaud